|
import os.path as osp |
|
|
|
import PIL.Image as PImage |
|
from torchvision.datasets.folder import DatasetFolder, IMG_EXTENSIONS |
|
from torchvision.transforms import InterpolationMode, transforms |
|
|
|
|
|
def normalize_01_into_pm1(x): |
|
return x.add(x).add_(-1) |
|
|
|
|
|
def build_dataset( |
|
data_path: str, final_reso: int, |
|
hflip=False, mid_reso=1.125, |
|
): |
|
|
|
mid_reso = round(mid_reso * final_reso) |
|
train_aug, val_aug = [ |
|
transforms.Resize(mid_reso, interpolation=InterpolationMode.LANCZOS), |
|
transforms.RandomCrop((final_reso, final_reso)), |
|
transforms.ToTensor(), normalize_01_into_pm1, |
|
], [ |
|
transforms.Resize(mid_reso, interpolation=InterpolationMode.LANCZOS), |
|
transforms.CenterCrop((final_reso, final_reso)), |
|
transforms.ToTensor(), normalize_01_into_pm1, |
|
] |
|
if hflip: train_aug.insert(0, transforms.RandomHorizontalFlip()) |
|
train_aug, val_aug = transforms.Compose(train_aug), transforms.Compose(val_aug) |
|
|
|
|
|
train_set = DatasetFolder(root=osp.join(data_path, 'train'), loader=pil_loader, extensions=IMG_EXTENSIONS, transform=train_aug) |
|
val_set = DatasetFolder(root=osp.join(data_path, 'val'), loader=pil_loader, extensions=IMG_EXTENSIONS, transform=val_aug) |
|
num_classes = 1000 |
|
print(f'[Dataset] {len(train_set)=}, {len(val_set)=}, {num_classes=}') |
|
print_aug(train_aug, '[train]') |
|
print_aug(val_aug, '[val]') |
|
|
|
|
|
return num_classes, train_set, val_set |
|
|
|
|
|
def pil_loader(path): |
|
with open(path, 'rb') as f: |
|
img: PImage.Image = PImage.open(f).convert('RGB') |
|
return img |
|
|
|
|
|
def print_aug(transform, label): |
|
print(f'Transform {label} = ') |
|
if hasattr(transform, 'transforms'): |
|
for t in transform.transforms: |
|
print(t) |
|
else: |
|
print(transform) |
|
print('---------------------------\n') |
|
|