|
import numpy as np |
|
import torch |
|
from torch.utils.data.sampler import Sampler |
|
|
|
|
|
class EvalDistributedSampler(Sampler): |
|
def __init__(self, dataset, num_replicas, rank): |
|
seps = np.linspace(0, len(dataset), num_replicas+1, dtype=int) |
|
beg, end = seps[:-1], seps[1:] |
|
beg, end = beg[rank], end[rank] |
|
self.indices = tuple(range(beg, end)) |
|
|
|
def __iter__(self): |
|
return iter(self.indices) |
|
|
|
def __len__(self) -> int: |
|
return len(self.indices) |
|
|
|
|
|
class InfiniteBatchSampler(Sampler): |
|
def __init__(self, dataset_len, batch_size, seed_for_all_rank=0, fill_last=False, shuffle=True, drop_last=False, start_ep=0, start_it=0): |
|
self.dataset_len = dataset_len |
|
self.batch_size = batch_size |
|
self.iters_per_ep = dataset_len // batch_size if drop_last else (dataset_len + batch_size - 1) // batch_size |
|
self.max_p = self.iters_per_ep * batch_size |
|
self.fill_last = fill_last |
|
self.shuffle = shuffle |
|
self.epoch = start_ep |
|
self.same_seed_for_all_ranks = seed_for_all_rank |
|
self.indices = self.gener_indices() |
|
self.start_ep, self.start_it = start_ep, start_it |
|
|
|
def gener_indices(self): |
|
if self.shuffle: |
|
g = torch.Generator() |
|
g.manual_seed(self.epoch + self.same_seed_for_all_ranks) |
|
indices = torch.randperm(self.dataset_len, generator=g).numpy() |
|
else: |
|
indices = torch.arange(self.dataset_len).numpy() |
|
|
|
tails = self.batch_size - (self.dataset_len % self.batch_size) |
|
if tails != self.batch_size and self.fill_last: |
|
tails = indices[:tails] |
|
np.random.shuffle(indices) |
|
indices = np.concatenate((indices, tails)) |
|
|
|
|
|
|
|
return tuple(indices.tolist()) |
|
|
|
def __iter__(self): |
|
self.epoch = self.start_ep |
|
while True: |
|
self.epoch += 1 |
|
p = (self.start_it * self.batch_size) if self.epoch == self.start_ep else 0 |
|
while p < self.max_p: |
|
q = p + self.batch_size |
|
yield self.indices[p:q] |
|
p = q |
|
if self.shuffle: |
|
self.indices = self.gener_indices() |
|
|
|
def __len__(self): |
|
return self.iters_per_ep |
|
|
|
|
|
class DistInfiniteBatchSampler(InfiniteBatchSampler): |
|
def __init__(self, world_size, rank, dataset_len, glb_batch_size, same_seed_for_all_ranks=0, repeated_aug=0, fill_last=False, shuffle=True, start_ep=0, start_it=0): |
|
assert glb_batch_size % world_size == 0 |
|
self.world_size, self.rank = world_size, rank |
|
self.dataset_len = dataset_len |
|
self.glb_batch_size = glb_batch_size |
|
self.batch_size = glb_batch_size // world_size |
|
|
|
self.iters_per_ep = (dataset_len + glb_batch_size - 1) // glb_batch_size |
|
self.fill_last = fill_last |
|
self.shuffle = shuffle |
|
self.repeated_aug = repeated_aug |
|
self.epoch = start_ep |
|
self.same_seed_for_all_ranks = same_seed_for_all_ranks |
|
self.indices = self.gener_indices() |
|
self.start_ep, self.start_it = start_ep, start_it |
|
|
|
def gener_indices(self): |
|
global_max_p = self.iters_per_ep * self.glb_batch_size |
|
|
|
if self.shuffle: |
|
g = torch.Generator() |
|
g.manual_seed(self.epoch + self.same_seed_for_all_ranks) |
|
global_indices = torch.randperm(self.dataset_len, generator=g) |
|
if self.repeated_aug > 1: |
|
global_indices = global_indices[:(self.dataset_len + self.repeated_aug - 1) // self.repeated_aug].repeat_interleave(self.repeated_aug, dim=0)[:global_max_p] |
|
else: |
|
global_indices = torch.arange(self.dataset_len) |
|
filling = global_max_p - global_indices.shape[0] |
|
if filling > 0 and self.fill_last: |
|
global_indices = torch.cat((global_indices, global_indices[:filling])) |
|
|
|
|
|
seps = torch.linspace(0, global_indices.shape[0], self.world_size + 1, dtype=torch.int) |
|
local_indices = global_indices[seps[self.rank].item():seps[self.rank + 1].item()].tolist() |
|
self.max_p = len(local_indices) |
|
return local_indices |
|
|