Datasets:
slz1
/

ArXiv:
wxy_var / utils /t2i_control.py
slz1's picture
Add files using upload-large-folder tool
7b4c6f4 verified
from PIL import PngImagePlugin
MaximumDecompressedSize = 1024
MegaByte = 2**20
PngImagePlugin.MAX_TEXT_CHUNK = MaximumDecompressedSize * MegaByte
import torch
# from datasets import load_dataset, load_from_disk
# import random
# import pickle
# import logging
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset, load_from_disk, concatenate_datasets
from huggingface_hub import create_repo, upload_folder
from transformers import AutoTokenizer, PretrainedConfig
import argparse
from PIL import Image
from pathlib import Path
from tqdm.auto import tqdm
from packaging import version
from torchvision import transforms
from torch.cuda.amp import autocast
from torchvision.transforms.functional import normalize
# from util import group_random_crop
import numpy as np
import os
from torch.utils.data import Dataset
from utils.canny import CannyDetector
# from condition.hed import HEDdetector
logger = get_logger(__name__)
class T2IControlCode(Dataset):
def __init__(self, args):
self.get_image = args.get_image
self.get_prompt = args.get_prompt
self.get_label = args.get_label
self.control_type = args.condition_type
if self.control_type == 'canny':
self.get_control = CannyDetector()
self.code_path = args.code_path
code_file_path = os.path.join(self.code_path, 'code')
file_num = len(os.listdir(code_file_path))
self.code_files = [os.path.join(code_file_path, f"{i}.npy") for i in range(file_num)]
# if args.code_path2 is not None:
# self.code_path2 = args.code_path2
# code_file_path2 = os.path.join(self.code_path2, 'code')
# file_num2 = len(os.listdir(code_file_path2))
# self.code_files2 = [os.path.join(code_file_path2, f"{i}.npy") for i in range(file_num2)]
# self.code_files = self.code_files + self.code_files2
self.image_size = args.image_size
latent_size = args.image_size // args.downsample_size
self.code_len = latent_size ** 2
self.t5_feature_max_len = 120
self.t5_feature_dim = 2048
self.max_seq_length = self.t5_feature_max_len + self.code_len
def __len__(self):
return len(self.code_files)
def dummy_data(self):
img = torch.zeros((3, self.image_size, self.image_size), dtype=torch.float32)
t5_feat_padding = torch.zeros((1, self.t5_feature_max_len, self.t5_feature_dim))
attn_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool)).unsqueeze(0)
valid = 0
return img, t5_feat_padding, attn_mask, valid
def collate_fn(self, examples):
code = torch.stack([example["code"] for example in examples])
control = torch.stack([example["control"] for example in examples])
if self.control_type == 'canny':
control = control.unsqueeze(1).repeat(1,3,1,1)
caption_emb = torch.stack([example["caption_emb"] for example in examples])
attn_mask = torch.stack([example["attn_mask"] for example in examples])
valid = torch.stack([example["valid"] for example in examples])
if self.get_image:
image = torch.stack([example["image"] for example in examples])
if self.get_prompt:
prompt = [example["prompt"][0] for example in examples]
if self.control_type == "seg":
label = torch.stack([example["label"] for example in examples])
output = {}
output['code'] = code
output['control'] = control
output['caption_emb'] = caption_emb
output['attn_mask'] = attn_mask
output['valid'] = valid
if self.get_image:
output['image'] = image
if self.get_prompt:
output['prompt'] = prompt
if self.control_type == "seg":
output['label'] = label
return output
def __getitem__(self, index):
code_path = self.code_files[index]
if self.control_type == 'seg':
control_path = code_path.replace('code', 'control').replace('npy', 'png')
control = np.array(Image.open(control_path))/255
control = 2*(control - 0.5)
elif self.control_type == 'depth':
control_path = code_path.replace('code', 'control_depth').replace('npy', 'png')
control = np.array(Image.open(control_path))/255
control = 2*(control - 0.5)
caption_path = code_path.replace('code', 'caption_emb').replace('npy', 'npz')
image_path = code_path.replace('code', 'image').replace('npy', 'png')
label_path = code_path.replace('code', 'label').replace('npy', 'png')
code = np.load(code_path)
image = np.array(Image.open(image_path)).astype(np.float32) / 255.0
t5_feat_padding = torch.zeros((1, self.t5_feature_max_len, self.t5_feature_dim))
caption = np.load(caption_path)
t5_feat = torch.from_numpy(caption['caption_emb'])
prompt = caption['prompt']
t5_feat_len = t5_feat.shape[1]
feat_len = min(self.t5_feature_max_len, t5_feat_len)
t5_feat_padding[:, -feat_len:] = t5_feat[:, :feat_len]
emb_mask = torch.zeros((self.t5_feature_max_len,))
emb_mask[-feat_len:] = 1
attn_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length))
T = self.t5_feature_max_len
attn_mask[:, :T] = attn_mask[:, :T] * emb_mask.unsqueeze(0)
eye_matrix = torch.eye(self.max_seq_length, self.max_seq_length)
attn_mask = attn_mask * (1 - eye_matrix) + eye_matrix
attn_mask = attn_mask.unsqueeze(0).to(torch.bool)
valid = 1
output = {}
output['code'] = torch.from_numpy(code)
if self.control_type == 'canny':
output['control'] = torch.from_numpy(2*(self.get_control(image)/255 - 0.5))
elif self.control_type == "seg":
output['control'] = torch.from_numpy(control.transpose(2,0,1))
elif self.control_type == "depth":
output['control'] = torch.from_numpy(control.transpose(2,0,1))
elif self.control_type == 'hed':
output['control'] = torch.from_numpy(image.transpose(2,0,1))
elif self.control_type == 'lineart':
output['control'] = torch.from_numpy(image.transpose(2,0,1))
output['caption_emb'] = t5_feat_padding
output['attn_mask'] = attn_mask
output['valid'] = torch.tensor(valid)
output['image'] = torch.from_numpy(image.transpose(2,0,1))
if self.get_prompt:
output['prompt'] = prompt
if self.control_type == "seg":
output['label'] = torch.from_numpy(np.array(Image.open(label_path)))
return output
def build_t2i_control_code(args):
dataset = T2IControlCode(args)
return dataset
if __name__ == '__main__':
args = parse_args()
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
train_dataset, val_dataset = make_train_dataset(args, None, accelerator)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=8,
num_workers=0,
)
from tqdm import tqdm
for step, batch in tqdm(enumerate(train_dataloader)):
continue