|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import torchvision.transforms.functional as F |
|
|
|
from PIL import Image |
|
from typing import Optional |
|
from functools import partial |
|
from torch import Tensor |
|
from torchvision import transforms |
|
|
|
|
|
|
|
from transformers import DPTForDepthEstimation |
|
|
|
|
|
from torchvision.transforms import RandomCrop |
|
|
|
|
|
def get_reward_model(task='segmentation', model_path='mmseg::upernet/upernet_r50_4xb4-160k_ade20k-512x512.py'): |
|
"""Return reward model for different tasks. |
|
|
|
Args: |
|
task (str, optional): Task name. Defaults to 'segmentation'. |
|
model_path (str, optional): Model name or pre-trained path. |
|
|
|
""" |
|
if task == 'segmentation': |
|
return get_model(model_path, pretrained=True) |
|
elif task == 'canny': |
|
return Canny() |
|
elif task == 'depth': |
|
return DPTForDepthEstimation.from_pretrained(model_path) |
|
elif task == 'lineart': |
|
model = LineDrawingModel() |
|
model.load_state_dict(torch.hub.load_state_dict_from_url(model_path, map_location=torch.device('cpu'))) |
|
return model |
|
elif task == 'hed': |
|
return HEDdetector(model_path) |
|
else: |
|
raise not NotImplementedError("Only support segmentation, canny and depth for now.") |
|
|
|
|
|
def get_reward_loss(predictions, labels, task='segmentation', **args): |
|
"""Return reward loss for different tasks. |
|
|
|
Args: |
|
task (str, optional): Task name. |
|
|
|
Returns: |
|
torch.nn.Module: Loss class. |
|
""" |
|
if task == 'segmentation': |
|
return nn.functional.cross_entropy(predictions, labels, ignore_index=255, **args) |
|
elif task == 'canny': |
|
loss = nn.functional.mse_loss(predictions, labels, **args).mean(2) |
|
return loss.mean((-1,-2)) |
|
elif task in ['depth', 'lineart', 'hed']: |
|
loss = nn.functional.mse_loss(predictions, labels, **args) |
|
return loss |
|
else: |
|
raise not NotImplementedError("Only support segmentation, canny and depth for now.") |
|
|
|
|
|
def image_grid(imgs, rows, cols): |
|
"""Image grid for visualization.""" |
|
assert len(imgs) == rows * cols |
|
|
|
w, h = imgs[0].size |
|
grid = Image.new("RGB", size=(cols * w, rows * h)) |
|
|
|
for i, img in enumerate(imgs): |
|
grid.paste(img, box=(i % cols * w, i // cols * h)) |
|
return grid |
|
|
|
|
|
def map_color_to_index(image, dataset='limingcv/Captioned_ADE20K'): |
|
"""Map colored segmentation image (RGB) into original label format (L). |
|
|
|
Args: |
|
image (torch.tensor): image tensor with shape (N, 3, H, W). |
|
dataset (str, optional): Dataset name. Defaults to 'ADE20K'. |
|
|
|
Returns: |
|
torch.tensor: mask tensor with shape (N, H, W). |
|
""" |
|
if dataset == 'limingcv/Captioned_ADE20K': |
|
palette = np.load('ade20k_palette.npy') |
|
elif dataset == 'limingcv/Captioned_COCOStuff': |
|
palette = np.load('coco_stuff_palette.npy') |
|
else: |
|
raise NotImplementedError("Only support ADE20K and COCO-Stuff dataset for now.") |
|
|
|
image = image * 255 |
|
palette_tensor = torch.tensor(palette, dtype=image.dtype, device=image.device) |
|
reshaped_image = image.permute(0, 2, 3, 1).reshape(-1, 3) |
|
|
|
|
|
indices = torch.argmin(torch.norm(reshaped_image[:, None, :] - palette_tensor, dim=-1), dim=-1) |
|
|
|
|
|
return indices.view(image.shape[0], image.shape[2], image.shape[3]) |
|
|
|
|
|
def seg_label_transform( |
|
labels, |
|
dataset_name='limingcv/Captioned_ADE20K', |
|
output_size=(64, 64), |
|
interpolation=transforms.InterpolationMode.NEAREST, |
|
max_size=None, |
|
antialias=True): |
|
"""Adapt RGB seg_map into loss computation. \ |
|
(1) Map the RGB seg_map into the original label format (Single Channel). \ |
|
(2) Resize the seg_map into the same size as the output feature map. \ |
|
(3) Remove background class if needed (usually for ADE20K). |
|
|
|
Args: |
|
labels (torch.tensor): Segmentation map. (N, 3, H, W) for ADE20K and (N, H, W) for COCO-Stuff. |
|
dataset_name (string): Dataset name. Default to 'ADE20K'. |
|
output_size (tuple): Resized image size, should be aligned with the output of segmentation models. |
|
interpolation (optional): _description_. Defaults to transforms.InterpolationMode.NEAREST. |
|
max_size (optional): Defaults to None. |
|
antialias (optional): Defaults to True. |
|
|
|
Returns: |
|
torch.tensor: formatted labels for loss computation. |
|
""" |
|
|
|
if dataset_name == 'limingcv/Captioned_ADE20K': |
|
labels = map_color_to_index(labels, dataset_name) |
|
labels = F.resize(labels, output_size, interpolation, max_size, antialias) |
|
|
|
|
|
|
|
labels = labels - 1 |
|
labels[labels == -1] = 255 |
|
elif dataset_name == 'limingcv/Captioned_COCOStuff': |
|
labels = F.resize(labels, output_size, interpolation, max_size, antialias) |
|
|
|
return labels.long() |
|
|
|
def depth_label_transform( |
|
labels, |
|
dataset_name, |
|
output_size=None, |
|
interpolation=transforms.InterpolationMode.BILINEAR, |
|
max_size=None, |
|
antialias=True |
|
): |
|
|
|
if output_size is not None: |
|
labels = F.resize(labels, output_size, interpolation, max_size, antialias) |
|
return labels |
|
|
|
|
|
def edge_label_transform(labels, dataset_name): |
|
return labels |
|
|
|
|
|
def label_transform(labels, task, dataset_name, **args): |
|
if task == 'segmentation': |
|
return seg_label_transform(labels, dataset_name, **args) |
|
elif task == 'depth': |
|
return depth_label_transform(labels, dataset_name, **args) |
|
elif task in ['canny', 'lineart', 'hed']: |
|
return edge_label_transform(labels, dataset_name, **args) |
|
else: |
|
raise NotImplementedError("Only support segmentation and edge detection for now.") |
|
|
|
|
|
def group_random_crop(images, resolution): |
|
""" |
|
Args: |
|
images (list of PIL Image or Tensor): List of images to be cropped. |
|
|
|
Returns: |
|
List of PIL Image or Tensor: List of cropped image. |
|
""" |
|
|
|
if isinstance(resolution, int): |
|
resolution = (resolution, resolution) |
|
|
|
for idx, image in enumerate(images): |
|
i, j, h, w = RandomCrop.get_params(image, output_size=resolution) |
|
images[idx] = F.crop(image, i, j, h, w) |
|
|
|
return images |
|
|
|
|
|
norm_layer = nn.InstanceNorm2d |
|
class ResidualBlock(nn.Module): |
|
def __init__(self, in_features): |
|
super(ResidualBlock, self).__init__() |
|
|
|
conv_block = [ nn.ReflectionPad2d(1), |
|
nn.Conv2d(in_features, in_features, 3), |
|
norm_layer(in_features), |
|
nn.ReLU(inplace=True), |
|
nn.ReflectionPad2d(1), |
|
nn.Conv2d(in_features, in_features, 3), |
|
norm_layer(in_features) |
|
] |
|
|
|
self.conv_block = nn.Sequential(*conv_block) |
|
|
|
def forward(self, x): |
|
return x + self.conv_block(x) |
|
|
|
|
|
class LineDrawingModel(nn.Module): |
|
def __init__(self, input_nc=3, output_nc=1, n_residual_blocks=3, sigmoid=True): |
|
super(LineDrawingModel, self).__init__() |
|
|
|
|
|
model0 = [ nn.ReflectionPad2d(3), |
|
nn.Conv2d(input_nc, 64, 7), |
|
norm_layer(64), |
|
nn.ReLU(inplace=True) ] |
|
self.model0 = nn.Sequential(*model0) |
|
|
|
|
|
model1 = [] |
|
in_features = 64 |
|
out_features = in_features*2 |
|
for _ in range(2): |
|
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), |
|
norm_layer(out_features), |
|
nn.ReLU(inplace=True) ] |
|
in_features = out_features |
|
out_features = in_features*2 |
|
self.model1 = nn.Sequential(*model1) |
|
|
|
model2 = [] |
|
|
|
for _ in range(n_residual_blocks): |
|
model2 += [ResidualBlock(in_features)] |
|
self.model2 = nn.Sequential(*model2) |
|
|
|
|
|
model3 = [] |
|
out_features = in_features//2 |
|
for _ in range(2): |
|
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), |
|
norm_layer(out_features), |
|
nn.ReLU(inplace=True) ] |
|
in_features = out_features |
|
out_features = in_features//2 |
|
self.model3 = nn.Sequential(*model3) |
|
|
|
|
|
model4 = [ nn.ReflectionPad2d(3), |
|
nn.Conv2d(64, output_nc, 7)] |
|
if sigmoid: |
|
model4 += [nn.Sigmoid()] |
|
|
|
self.model4 = nn.Sequential(*model4) |
|
|
|
def forward(self, x, cond=None): |
|
out = self.model0(x) |
|
out = self.model1(out) |
|
out = self.model2(out) |
|
out = self.model3(out) |
|
out = self.model4(out) |
|
|
|
return out |
|
|
|
|
|
|
|
class DoubleConvBlock(torch.nn.Module): |
|
def __init__(self, input_channel, output_channel, layer_number): |
|
super().__init__() |
|
self.convs = torch.nn.Sequential() |
|
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) |
|
for i in range(1, layer_number): |
|
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) |
|
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) |
|
|
|
def __call__(self, x, down_sampling=False): |
|
h = x |
|
if down_sampling: |
|
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) |
|
for conv in self.convs: |
|
h = conv(h) |
|
h = torch.nn.functional.relu(h) |
|
return h, self.projection(h) |
|
|
|
|
|
class ControlNetHED_Apache2(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) |
|
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) |
|
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) |
|
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) |
|
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) |
|
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) |
|
|
|
def __call__(self, x): |
|
h = x - self.norm |
|
h, projection1 = self.block1(h) |
|
h, projection2 = self.block2(h, down_sampling=True) |
|
h, projection3 = self.block3(h, down_sampling=True) |
|
h, projection4 = self.block4(h, down_sampling=True) |
|
h, projection5 = self.block5(h, down_sampling=True) |
|
return projection1, projection2, projection3, projection4, projection5 |
|
|
|
|
|
class HEDdetector(nn.Module): |
|
def __init__(self, model_path): |
|
super().__init__() |
|
state_dict = torch.hub.load_state_dict_from_url(model_path, map_location=torch.device('cpu')) |
|
|
|
self.netNetwork = ControlNetHED_Apache2() |
|
self.netNetwork.load_state_dict(state_dict) |
|
|
|
def __call__(self, input_image): |
|
H, W = input_image.shape[2], input_image.shape[3] |
|
|
|
edges = self.netNetwork((input_image * 255).clip(0, 255)) |
|
edges = [torch.nn.functional.interpolate(edge, size=(H, W), mode='bilinear') for edge in edges] |
|
edges = torch.stack(edges, dim=1) |
|
edge = 1 / (1 + torch.exp(-torch.mean(edges, dim=1))) |
|
edge = (edge * 255.0).clip(0, 255).to(torch.uint8) |
|
|
|
return edge / 255.0 |