import torch import torch.nn as nn def freeze_model(model, pretrained_state_dict=None, freeze_keywords=('blocks',), keep_keywords=('Caption_embedding', 'condition_layers', 'cross_attn_inject')): """ 冻结模型中已在预训练权重中出现的参数(来自 state_dict),但保留 keep_keywords 中包含的模块可训练。 :param model: 要处理的 PyTorch 模型 :param pretrained_state_dict: 来自 torch.load() 的 state_dict,默认不提供时使用关键词模式 :param freeze_keywords: 当未提供 state_dict 时,根据关键词冻结 :param keep_keywords: 始终保留可训练的关键词( ) """ frozen, trainable = [], [] if pretrained_state_dict is not None: pretrained_keys = set(pretrained_state_dict.keys()) for name, param in model.named_parameters(): if name in pretrained_keys and not any(k in name for k in keep_keywords): param.requires_grad = False frozen.append(name) else: param.requires_grad = True trainable.append(name) else: # fallback:关键词方式 for name, param in model.named_parameters(): if any(k in name for k in freeze_keywords) and not any(k in name for k in keep_keywords): param.requires_grad = False frozen.append(name) else: param.requires_grad = True trainable.append(name) # print(f"[Freeze Summary] Frozen: {len(frozen)}, Trainable: {len(trainable)}") # for name in frozen: # print(f" [Frozen] {name}") # for name in trainable: # print(f" [Trainable] {name}")