import torch import torch.nn as nn import numpy as np import torchvision.transforms.functional as F from PIL import Image from typing import Optional from functools import partial from torch import Tensor from torchvision import transforms # from canny_tools import Canny # canny edge detection # from mmengine.hub import get_model # segmentation from transformers import DPTForDepthEstimation # depth estimation # from mmseg.models.losses.silog_loss import silog_loss from torchvision.transforms import RandomCrop def get_reward_model(task='segmentation', model_path='mmseg::upernet/upernet_r50_4xb4-160k_ade20k-512x512.py'): """Return reward model for different tasks. Args: task (str, optional): Task name. Defaults to 'segmentation'. model_path (str, optional): Model name or pre-trained path. """ if task == 'segmentation': return get_model(model_path, pretrained=True) elif task == 'canny': return Canny() elif task == 'depth': return DPTForDepthEstimation.from_pretrained(model_path) elif task == 'lineart': model = LineDrawingModel() model.load_state_dict(torch.hub.load_state_dict_from_url(model_path, map_location=torch.device('cpu'))) return model elif task == 'hed': return HEDdetector(model_path) else: raise not NotImplementedError("Only support segmentation, canny and depth for now.") def get_reward_loss(predictions, labels, task='segmentation', **args): """Return reward loss for different tasks. Args: task (str, optional): Task name. Returns: torch.nn.Module: Loss class. """ if task == 'segmentation': return nn.functional.cross_entropy(predictions, labels, ignore_index=255, **args) elif task == 'canny': loss = nn.functional.mse_loss(predictions, labels, **args).mean(2) return loss.mean((-1,-2)) elif task in ['depth', 'lineart', 'hed']: loss = nn.functional.mse_loss(predictions, labels, **args) return loss else: raise not NotImplementedError("Only support segmentation, canny and depth for now.") def image_grid(imgs, rows, cols): """Image grid for visualization.""" assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid def map_color_to_index(image, dataset='limingcv/Captioned_ADE20K'): """Map colored segmentation image (RGB) into original label format (L). Args: image (torch.tensor): image tensor with shape (N, 3, H, W). dataset (str, optional): Dataset name. Defaults to 'ADE20K'. Returns: torch.tensor: mask tensor with shape (N, H, W). """ if dataset == 'limingcv/Captioned_ADE20K': palette = np.load('ade20k_palette.npy') elif dataset == 'limingcv/Captioned_COCOStuff': palette = np.load('coco_stuff_palette.npy') else: raise NotImplementedError("Only support ADE20K and COCO-Stuff dataset for now.") image = image * 255 palette_tensor = torch.tensor(palette, dtype=image.dtype, device=image.device) reshaped_image = image.permute(0, 2, 3, 1).reshape(-1, 3) # Calculate the difference of colors and find the index of the minimum distance indices = torch.argmin(torch.norm(reshaped_image[:, None, :] - palette_tensor, dim=-1), dim=-1) # Transform indices back to original shape return indices.view(image.shape[0], image.shape[2], image.shape[3]) def seg_label_transform( labels, dataset_name='limingcv/Captioned_ADE20K', output_size=(64, 64), interpolation=transforms.InterpolationMode.NEAREST, max_size=None, antialias=True): """Adapt RGB seg_map into loss computation. \ (1) Map the RGB seg_map into the original label format (Single Channel). \ (2) Resize the seg_map into the same size as the output feature map. \ (3) Remove background class if needed (usually for ADE20K). Args: labels (torch.tensor): Segmentation map. (N, 3, H, W) for ADE20K and (N, H, W) for COCO-Stuff. dataset_name (string): Dataset name. Default to 'ADE20K'. output_size (tuple): Resized image size, should be aligned with the output of segmentation models. interpolation (optional): _description_. Defaults to transforms.InterpolationMode.NEAREST. max_size (optional): Defaults to None. antialias (optional): Defaults to True. Returns: torch.tensor: formatted labels for loss computation. """ if dataset_name == 'limingcv/Captioned_ADE20K': labels = map_color_to_index(labels, dataset_name) labels = F.resize(labels, output_size, interpolation, max_size, antialias) # 0 means the background class in ADE20K # In a unified format, we use 255 to represent the background class for both ADE20K and COCO-Stuff labels = labels - 1 labels[labels == -1] = 255 elif dataset_name == 'limingcv/Captioned_COCOStuff': labels = F.resize(labels, output_size, interpolation, max_size, antialias) return labels.long() def depth_label_transform( labels, dataset_name, output_size=None, interpolation=transforms.InterpolationMode.BILINEAR, max_size=None, antialias=True ): if output_size is not None: labels = F.resize(labels, output_size, interpolation, max_size, antialias) return labels def edge_label_transform(labels, dataset_name): return labels def label_transform(labels, task, dataset_name, **args): if task == 'segmentation': return seg_label_transform(labels, dataset_name, **args) elif task == 'depth': return depth_label_transform(labels, dataset_name, **args) elif task in ['canny', 'lineart', 'hed']: return edge_label_transform(labels, dataset_name, **args) else: raise NotImplementedError("Only support segmentation and edge detection for now.") def group_random_crop(images, resolution): """ Args: images (list of PIL Image or Tensor): List of images to be cropped. Returns: List of PIL Image or Tensor: List of cropped image. """ if isinstance(resolution, int): resolution = (resolution, resolution) for idx, image in enumerate(images): i, j, h, w = RandomCrop.get_params(image, output_size=resolution) images[idx] = F.crop(image, i, j, h, w) return images norm_layer = nn.InstanceNorm2d class ResidualBlock(nn.Module): def __init__(self, in_features): super(ResidualBlock, self).__init__() conv_block = [ nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features), nn.ReLU(inplace=True), nn.ReflectionPad2d(1), nn.Conv2d(in_features, in_features, 3), norm_layer(in_features) ] self.conv_block = nn.Sequential(*conv_block) def forward(self, x): return x + self.conv_block(x) class LineDrawingModel(nn.Module): def __init__(self, input_nc=3, output_nc=1, n_residual_blocks=3, sigmoid=True): super(LineDrawingModel, self).__init__() # Initial convolution block model0 = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, 64, 7), norm_layer(64), nn.ReLU(inplace=True) ] self.model0 = nn.Sequential(*model0) # Downsampling model1 = [] in_features = 64 out_features = in_features*2 for _ in range(2): model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features*2 self.model1 = nn.Sequential(*model1) model2 = [] # Residual blocks for _ in range(n_residual_blocks): model2 += [ResidualBlock(in_features)] self.model2 = nn.Sequential(*model2) # Upsampling model3 = [] out_features = in_features//2 for _ in range(2): model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1), norm_layer(out_features), nn.ReLU(inplace=True) ] in_features = out_features out_features = in_features//2 self.model3 = nn.Sequential(*model3) # Output layer model4 = [ nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)] if sigmoid: model4 += [nn.Sigmoid()] self.model4 = nn.Sequential(*model4) def forward(self, x, cond=None): out = self.model0(x) out = self.model1(out) out = self.model2(out) out = self.model3(out) out = self.model4(out) return out class DoubleConvBlock(torch.nn.Module): def __init__(self, input_channel, output_channel, layer_number): super().__init__() self.convs = torch.nn.Sequential() self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) for i in range(1, layer_number): self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1)) self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0) def __call__(self, x, down_sampling=False): h = x if down_sampling: h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2)) for conv in self.convs: h = conv(h) h = torch.nn.functional.relu(h) return h, self.projection(h) class ControlNetHED_Apache2(torch.nn.Module): def __init__(self): super().__init__() self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1))) self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2) self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2) self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3) self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3) self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3) def __call__(self, x): h = x - self.norm h, projection1 = self.block1(h) h, projection2 = self.block2(h, down_sampling=True) h, projection3 = self.block3(h, down_sampling=True) h, projection4 = self.block4(h, down_sampling=True) h, projection5 = self.block5(h, down_sampling=True) return projection1, projection2, projection3, projection4, projection5 class HEDdetector(nn.Module): def __init__(self, model_path): super().__init__() state_dict = torch.hub.load_state_dict_from_url(model_path, map_location=torch.device('cpu')) self.netNetwork = ControlNetHED_Apache2() self.netNetwork.load_state_dict(state_dict) def __call__(self, input_image): H, W = input_image.shape[2], input_image.shape[3] edges = self.netNetwork((input_image * 255).clip(0, 255)) edges = [torch.nn.functional.interpolate(edge, size=(H, W), mode='bilinear') for edge in edges] edges = torch.stack(edges, dim=1) edge = 1 / (1 + torch.exp(-torch.mean(edges, dim=1))) edge = (edge * 255.0).clip(0, 255).to(torch.uint8) return edge / 255.0