--- dataset_info: features: - name: depth dtype: int64 - name: width dtype: int64 - name: tokens dtype: int64 - name: FLOPs_per_token dtype: float64 - name: FLOPs dtype: float64 - name: params dtype: float64 - name: params_with_embeds dtype: float64 - name: FLOPs_6N dtype: float64 - name: params_pred_loss dtype: float64 - name: wd_ratio dtype: float64 - name: wd_pred_loss dtype: float64 - name: bucket dtype: string splits: - name: train num_bytes: 1772 num_examples: 13 download_size: 6825 dataset_size: 1772 configs: - config_name: default data_files: - split: train path: mins_1e-3/mins_lr_ablation_hot_width_depth_params_relaxed_params/train-* license: mit --- This dataset is my cache for the [scaling-laws](https://github.com/mcleish7/gemstone-scaling-laws) related to the [gemstone models](https://huggingface.co/collections/tomg-group-umd/gemstone-models-679408ee3f19f1d4d00e8b10). In `data_cache` is the approach 3 data cache with the mins for `delta=1e-4`, the mins for `delta=1e-3` are in `mins_1e-3`. This is the code I used to upload it: ``` import pandas as pd from datasets import Dataset import os import gc def get_data_dict(path): contents = os.listdir(path) ds_store = {} for i, file in enumerate(contents): gc.collect() df = pd.read_parquet(f"{path}{file}") for col in df.columns: if pd.api.types.is_interval_dtype(df[col]): df[col] = df[col].astype(str) hf_dataset = Dataset.from_pandas(df) ds_store[file.replace(".parquet", "")] = hf_dataset hf_dataset.push_to_hub( "smcleish/scaling-laws-cache", private=True, data_dir=path.split("/")[1] + "/" + file.replace(".parquet", ""), ) gc.collect() ds_1 = get_data_dict("plotters/data_cache/") ds_2 = get_data_dict("plotters/mins_1e-3/") ``` To download it do the oppostite of this. The cache is very large, so maybe target specific files you would like. The approach 3 code is expecting pandas `.parquet` files. Please open a discussion with any questions as this is currently very experimental.