File size: 5,358 Bytes
386005a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from pathlib import Path
from typing import Any, List, Tuple
import struct

import numpy as np
import cv2

from .types import Vector3, Quaternion, Keypoint


def load_frames(frames_path: Path) -> List[Tuple[int, np.ndarray]]:
    """Load encoded frames from a SEA stereo .dat file."""
    frames: List[Tuple[int, np.ndarray]] = []

    header_size = 8 + 8 + 4

    with open(frames_path, "rb") as f:
        while True:
            header = f.read(header_size)
            if len(header) < header_size:
                break

            frame_timestamp, frame_index, frame_size = struct.unpack(">qqi", header)
            frame_bytes = f.read(frame_size)

            if len(frame_bytes) != frame_size:
                raise EOFError("Unexpected EOF while reading frame data")

            frame_array = np.frombuffer(frame_bytes, dtype=np.uint8)
            frame = cv2.imdecode(frame_array, cv2.IMREAD_COLOR)
            if frame is not None:
                frames.append((frame_timestamp, frame))

    return frames


def load_depth(depth_dir: Path) -> list[tuple[int, np.ndarray]]:
    """Load depth from .npy files: <timestamp>_depth_meter.npy."""
    depth_frames: list[tuple[int, np.ndarray]] = []

    for path in sorted(depth_dir.glob("*_depth_meter.npy")):
        timestamp = int(path.stem.split("_")[0])

        depth = np.load(path).astype(np.float32)
        depth_frames.append((timestamp, depth))

    return depth_frames


def load_trajectory(trajectory_path: Path) -> List[Tuple[int, np.ndarray, np.ndarray]]:
    """Load camera trajectory from SEA binary trajectory file."""
    trajectory: List[Tuple[int, np.ndarray, np.ndarray]] = []

    trajectory_buffer_size = 8 + 7 * 4

    with open(trajectory_path, "rb") as f:
        while True:
            trajectory_buffer = f.read(trajectory_buffer_size)
            if len(trajectory_buffer) < trajectory_buffer_size:
                break

            timestamp = struct.unpack("<q", trajectory_buffer[:8])[0]
            pos_x, pos_y, pos_z, quat_x, quat_y, quat_z, quat_w = struct.unpack("<7f", trajectory_buffer[8:])

            pos = np.array([pos_x, pos_y, pos_z], dtype=np.float32)
            quat = np.array([quat_x, quat_y, quat_z, quat_w], dtype=np.float32)

            trajectory.append((timestamp, pos, quat))

    return trajectory


def load_body_data(body_data_path: Path) -> List[Any]:
    """Load body tracking data from SEA binary body_data file."""
    body_frames: List[Any] = []

    header_size = 8 + 4

    with open(body_data_path, "rb") as f:
        while True:
            header = f.read(header_size)
            if len(header) < header_size:
                break

            timestamp, keypoint_count = struct.unpack("<qi", header)
            keypoints = _read_keypoints(f, keypoint_count)[:70]

            body_frames.append(
                (
                    timestamp,
                    keypoints
                )
            )

    return body_frames


def load_hand_data(hand_data_path: Path) -> List[Any]:
    """Load hand tracking data from SEA binary hand_data file."""
    hand_frames: List[Any] = []

    timestamp_buffer_size = 8
    left_count_buffer_size = 4
    right_count_buffer_size = 4

    with open(hand_data_path, "rb") as f:
        while True:
            timestamp_buffer = f.read(timestamp_buffer_size)
            if len(timestamp_buffer) < timestamp_buffer_size:
                break
            timestamp = struct.unpack("<q", timestamp_buffer)[0]

            left_count_buffer = f.read(left_count_buffer_size)
            if len(left_count_buffer) < left_count_buffer_size:
                break
            left_count = struct.unpack("<i", left_count_buffer)[0]
            left_keypoints = _read_keypoints(f, left_count)

            right_count_buffer = f.read(right_count_buffer_size)
            if len(right_count_buffer) < right_count_buffer_size:
                break
            right_count = struct.unpack("<i", right_count_buffer)[0]
            right_keypoints = _read_keypoints(f, right_count)

            hand_frames.append(
                (
                    timestamp,
                    left_keypoints if left_keypoints else None,
                    right_keypoints if right_keypoints else None,
                )
            )

    return hand_frames


def _read_keypoints(f: Any, keypoint_count: int) -> List[Keypoint]:
    if keypoint_count <= 0:
        return []

    floats_per_keypoint = 7
    total_float_count = keypoint_count * floats_per_keypoint
    bytes_per_float = 4
    expected_byte_count = total_float_count * bytes_per_float

    raw_bytes = f.read(expected_byte_count)

    if len(raw_bytes) != expected_byte_count:
        raise EOFError("Unexpected EOF while reading keypoint data")

    float_values = struct.unpack("<" + "f" * total_float_count, raw_bytes)

    keypoints: List[Keypoint] = []

    for keypoint_index in range(keypoint_count):
        base_index = keypoint_index * floats_per_keypoint
        pos_x, pos_y, pos_z, quat_x, quat_y, quat_z, quat_w = float_values[
            base_index : base_index + floats_per_keypoint
        ]

        keypoints.append(
            Keypoint(
                position=Vector3(pos_x, pos_y, pos_z),
                rotation=Quaternion(quat_x, quat_y, quat_z, quat_w),
            )
        )

    return keypoints