sea-small / sea_scenes /loaders.py
alexandros-petkos's picture
first commit
386005a
raw
history blame
5.36 kB
from pathlib import Path
from typing import Any, List, Tuple
import struct
import numpy as np
import cv2
from .types import Vector3, Quaternion, Keypoint
def load_frames(frames_path: Path) -> List[Tuple[int, np.ndarray]]:
"""Load encoded frames from a SEA stereo .dat file."""
frames: List[Tuple[int, np.ndarray]] = []
header_size = 8 + 8 + 4
with open(frames_path, "rb") as f:
while True:
header = f.read(header_size)
if len(header) < header_size:
break
frame_timestamp, frame_index, frame_size = struct.unpack(">qqi", header)
frame_bytes = f.read(frame_size)
if len(frame_bytes) != frame_size:
raise EOFError("Unexpected EOF while reading frame data")
frame_array = np.frombuffer(frame_bytes, dtype=np.uint8)
frame = cv2.imdecode(frame_array, cv2.IMREAD_COLOR)
if frame is not None:
frames.append((frame_timestamp, frame))
return frames
def load_depth(depth_dir: Path) -> list[tuple[int, np.ndarray]]:
"""Load depth from .npy files: <timestamp>_depth_meter.npy."""
depth_frames: list[tuple[int, np.ndarray]] = []
for path in sorted(depth_dir.glob("*_depth_meter.npy")):
timestamp = int(path.stem.split("_")[0])
depth = np.load(path).astype(np.float32)
depth_frames.append((timestamp, depth))
return depth_frames
def load_trajectory(trajectory_path: Path) -> List[Tuple[int, np.ndarray, np.ndarray]]:
"""Load camera trajectory from SEA binary trajectory file."""
trajectory: List[Tuple[int, np.ndarray, np.ndarray]] = []
trajectory_buffer_size = 8 + 7 * 4
with open(trajectory_path, "rb") as f:
while True:
trajectory_buffer = f.read(trajectory_buffer_size)
if len(trajectory_buffer) < trajectory_buffer_size:
break
timestamp = struct.unpack("<q", trajectory_buffer[:8])[0]
pos_x, pos_y, pos_z, quat_x, quat_y, quat_z, quat_w = struct.unpack("<7f", trajectory_buffer[8:])
pos = np.array([pos_x, pos_y, pos_z], dtype=np.float32)
quat = np.array([quat_x, quat_y, quat_z, quat_w], dtype=np.float32)
trajectory.append((timestamp, pos, quat))
return trajectory
def load_body_data(body_data_path: Path) -> List[Any]:
"""Load body tracking data from SEA binary body_data file."""
body_frames: List[Any] = []
header_size = 8 + 4
with open(body_data_path, "rb") as f:
while True:
header = f.read(header_size)
if len(header) < header_size:
break
timestamp, keypoint_count = struct.unpack("<qi", header)
keypoints = _read_keypoints(f, keypoint_count)[:70]
body_frames.append(
(
timestamp,
keypoints
)
)
return body_frames
def load_hand_data(hand_data_path: Path) -> List[Any]:
"""Load hand tracking data from SEA binary hand_data file."""
hand_frames: List[Any] = []
timestamp_buffer_size = 8
left_count_buffer_size = 4
right_count_buffer_size = 4
with open(hand_data_path, "rb") as f:
while True:
timestamp_buffer = f.read(timestamp_buffer_size)
if len(timestamp_buffer) < timestamp_buffer_size:
break
timestamp = struct.unpack("<q", timestamp_buffer)[0]
left_count_buffer = f.read(left_count_buffer_size)
if len(left_count_buffer) < left_count_buffer_size:
break
left_count = struct.unpack("<i", left_count_buffer)[0]
left_keypoints = _read_keypoints(f, left_count)
right_count_buffer = f.read(right_count_buffer_size)
if len(right_count_buffer) < right_count_buffer_size:
break
right_count = struct.unpack("<i", right_count_buffer)[0]
right_keypoints = _read_keypoints(f, right_count)
hand_frames.append(
(
timestamp,
left_keypoints if left_keypoints else None,
right_keypoints if right_keypoints else None,
)
)
return hand_frames
def _read_keypoints(f: Any, keypoint_count: int) -> List[Keypoint]:
if keypoint_count <= 0:
return []
floats_per_keypoint = 7
total_float_count = keypoint_count * floats_per_keypoint
bytes_per_float = 4
expected_byte_count = total_float_count * bytes_per_float
raw_bytes = f.read(expected_byte_count)
if len(raw_bytes) != expected_byte_count:
raise EOFError("Unexpected EOF while reading keypoint data")
float_values = struct.unpack("<" + "f" * total_float_count, raw_bytes)
keypoints: List[Keypoint] = []
for keypoint_index in range(keypoint_count):
base_index = keypoint_index * floats_per_keypoint
pos_x, pos_y, pos_z, quat_x, quat_y, quat_z, quat_w = float_values[
base_index : base_index + floats_per_keypoint
]
keypoints.append(
Keypoint(
position=Vector3(pos_x, pos_y, pos_z),
rotation=Quaternion(quat_x, quat_y, quat_z, quat_w),
)
)
return keypoints