|
import datasets |
|
from pathlib import Path |
|
import random |
|
|
|
_DESCRIPTION = "Custom dataset with audio (.wav) and phoneme (.txt) pairs, split by speaker." |
|
|
|
|
|
_SEED = 42 |
|
|
|
class CustomAudioPhonemeDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.5") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
"audio": datasets.Audio(sampling_rate=16000), |
|
"phoneme": datasets.Sequence(datasets.Value("string")), |
|
"speaker": datasets.Value("string"), |
|
}), |
|
supervised_keys=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.manual_dir |
|
|
|
|
|
wav_dir = Path(data_dir) / 'wav' |
|
speakers = sorted([d.name for d in wav_dir.iterdir() if d.is_dir()]) |
|
random.seed(_SEED) |
|
random.shuffle(speakers) |
|
|
|
|
|
N = len(speakers) |
|
n_train = int(0.8 * N) |
|
n_val = int(0.1 * N) |
|
|
|
train_speakers = set(speakers[:n_train]) |
|
val_speakers = set(speakers[n_train:n_train + n_val]) |
|
test_speakers = set(speakers[n_train + n_val:]) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"dataset_folder": data_dir, "split_speakers": train_speakers}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"dataset_folder": data_dir, "split_speakers": val_speakers}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"dataset_folder": data_dir, "split_speakers": test_speakers}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, dataset_folder, split_speakers): |
|
dataset_folder = Path(dataset_folder) |
|
wav_dir = dataset_folder / 'wav' |
|
phoneme_dir = dataset_folder / 'phonemized' |
|
|
|
|
|
audio_files = sorted([p for p in wav_dir.rglob('*.wav') if not p.name.startswith('._')]) |
|
phoneme_files = sorted([p for p in phoneme_dir.rglob('*.txt') if not p.name.startswith('._')]) |
|
|
|
|
|
def get_speaker(path): |
|
|
|
return path.parent.name |
|
|
|
|
|
audio_map = {(get_speaker(p), p.stem): p for p in audio_files} |
|
phoneme_map = {(get_speaker(p), p.stem): p for p in phoneme_files} |
|
|
|
|
|
keys = set(audio_map.keys()) & set(phoneme_map.keys()) |
|
keys = [k for k in keys if k[0] in split_speakers] |
|
|
|
for idx, (speaker, stem) in enumerate(sorted(keys)): |
|
audio_path = str(audio_map[(speaker, stem)]) |
|
phoneme_path = str(phoneme_map[(speaker, stem)]) |
|
|
|
with open(phoneme_path, 'r', encoding='utf-8') as f: |
|
phoneme = f.read().split() |
|
|
|
yield idx, { |
|
"audio": {"path": audio_path, "bytes": None}, |
|
"phoneme": phoneme, |
|
"speaker": speaker, |
|
} |
|
|