Datasets:
ArXiv:
License:
feat: add notebook for parsing evaluation results
Browse files- ParseEvaluations.ipynb +55 -34
ParseEvaluations.ipynb
CHANGED
@@ -2,12 +2,13 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "5cbc726d-b9ed-4a87-8424-780a4db25a36",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
10 |
"import json\n",
|
|
|
11 |
"\n",
|
12 |
"from pathlib import Path\n",
|
13 |
"from tabulate import tabulate"
|
@@ -15,7 +16,7 @@
|
|
15 |
},
|
16 |
{
|
17 |
"cell_type": "code",
|
18 |
-
"execution_count":
|
19 |
"id": "dbffdf82-5cb2-485d-9334-6e6fb8cc9c91",
|
20 |
"metadata": {},
|
21 |
"outputs": [
|
@@ -23,7 +24,7 @@
|
|
23 |
"name": "stdout",
|
24 |
"output_type": "stream",
|
25 |
"text": [
|
26 |
-
"{'dbmdz/
|
27 |
]
|
28 |
}
|
29 |
],
|
@@ -58,7 +59,7 @@
|
|
58 |
},
|
59 |
{
|
60 |
"cell_type": "code",
|
61 |
-
"execution_count":
|
62 |
"id": "7170ec01-f0f1-49bb-9beb-7927c3b5b3f7",
|
63 |
"metadata": {},
|
64 |
"outputs": [
|
@@ -119,7 +120,7 @@
|
|
119 |
},
|
120 |
{
|
121 |
"cell_type": "code",
|
122 |
-
"execution_count":
|
123 |
"id": "5c444bbe-93e7-4e85-8560-56bff13e1bb0",
|
124 |
"metadata": {},
|
125 |
"outputs": [
|
@@ -127,49 +128,69 @@
|
|
127 |
"name": "stdout",
|
128 |
"output_type": "stream",
|
129 |
"text": [
|
130 |
-
"[
|
131 |
-
"
|
132 |
-
"
|
133 |
-
"
|
134 |
-
"
|
135 |
-
"
|
136 |
-
"
|
137 |
-
"
|
138 |
-
"
|
139 |
-
"
|
140 |
-
"
|
141 |
-
"
|
142 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
]
|
144 |
}
|
145 |
],
|
146 |
"source": [
|
147 |
-
"headers = [\"Phenomenon\"] + model_names\n",
|
148 |
"\n",
|
149 |
-
"
|
150 |
-
"\n",
|
151 |
-
"table = []\n",
|
152 |
"\n",
|
153 |
"for model_name in model_names:\n",
|
154 |
-
"
|
155 |
-
" \n",
|
156 |
" with open(model_name_evaluation_filename_mapping[model_name], \"rt\") as f_p:\n",
|
157 |
-
" \n",
|
158 |
" for line in f_p:\n",
|
159 |
" data = json.loads(line)\n",
|
160 |
"\n",
|
161 |
" current_task_name = data[\"file_name\"]\n",
|
162 |
-
" current_task_accuracy = round(data[\"accuracy\"],
|
|
|
163 |
" \n",
|
164 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
"\n",
|
166 |
-
"
|
167 |
-
" phenomenon = task_phenomenon_mapping[data_task_name]\n",
|
168 |
-
" accuracy = phenomenon_accuracy_mapping[data_task_name]\n",
|
169 |
-
" table.append([phenomenon, accuracy])\n",
|
170 |
-
" print(current_row)\n",
|
171 |
"\n",
|
172 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
]
|
174 |
}
|
175 |
],
|
@@ -189,7 +210,7 @@
|
|
189 |
"name": "python",
|
190 |
"nbconvert_exporter": "python",
|
191 |
"pygments_lexer": "ipython3",
|
192 |
-
"version": "3.
|
193 |
}
|
194 |
},
|
195 |
"nbformat": 4,
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"id": "5cbc726d-b9ed-4a87-8424-780a4db25a36",
|
7 |
"metadata": {},
|
8 |
"outputs": [],
|
9 |
"source": [
|
10 |
"import json\n",
|
11 |
+
"import numpy as np\n",
|
12 |
"\n",
|
13 |
"from pathlib import Path\n",
|
14 |
"from tabulate import tabulate"
|
|
|
16 |
},
|
17 |
{
|
18 |
"cell_type": "code",
|
19 |
+
"execution_count": 2,
|
20 |
"id": "dbffdf82-5cb2-485d-9334-6e6fb8cc9c91",
|
21 |
"metadata": {},
|
22 |
"outputs": [
|
|
|
24 |
"name": "stdout",
|
25 |
"output_type": "stream",
|
26 |
"text": [
|
27 |
+
"{'dbmdz/distilbert-base-turkish-cased': 'results-dbmdz-distilbert-base-turkish-cased.jsonl', 'dbmdz/convbert-base-turkish-mc4-cased': 'results-dbmdz-convbert-base-turkish-mc4-cased.jsonl', 'dbmdz/bert-base-turkish-uncased': 'results-dbmdz-bert-base-turkish-uncased.jsonl', 'dbmdz/bert-base-turkish-128k-cased': 'results-dbmdz-bert-base-turkish-128k-cased.jsonl', 'dbmdz/bert-base-turkish-cased': 'results-dbmdz-bert-base-turkish-cased.jsonl', 'dbmdz/electra-small-turkish-cased-generator': 'results-dbmdz-electra-small-turkish-cased-generator.jsonl', 'dbmdz/convbert-base-turkish-cased': 'results-dbmdz-convbert-base-turkish-cased.jsonl', 'dbmdz/electra-base-turkish-cased-generator': 'results-dbmdz-electra-base-turkish-cased-generator.jsonl', 'dbmdz/convbert-base-turkish-mc4-uncased': 'results-dbmdz-convbert-base-turkish-mc4-uncased.jsonl', 'dbmdz/electra-base-turkish-mc4-cased-generator': 'results-dbmdz-electra-base-turkish-mc4-cased-generator.jsonl', 'dbmdz/bert-base-turkish-128k-uncased': 'results-dbmdz-bert-base-turkish-128k-uncased.jsonl', 'dbmdz/electra-base-turkish-mc4-uncased-generator': 'results-dbmdz-electra-base-turkish-mc4-uncased-generator.jsonl'}\n"
|
28 |
]
|
29 |
}
|
30 |
],
|
|
|
59 |
},
|
60 |
{
|
61 |
"cell_type": "code",
|
62 |
+
"execution_count": 3,
|
63 |
"id": "7170ec01-f0f1-49bb-9beb-7927c3b5b3f7",
|
64 |
"metadata": {},
|
65 |
"outputs": [
|
|
|
120 |
},
|
121 |
{
|
122 |
"cell_type": "code",
|
123 |
+
"execution_count": 4,
|
124 |
"id": "5c444bbe-93e7-4e85-8560-56bff13e1bb0",
|
125 |
"metadata": {},
|
126 |
"outputs": [
|
|
|
128 |
"name": "stdout",
|
129 |
"output_type": "stream",
|
130 |
"text": [
|
131 |
+
"| Phenomenon | [`dbmdz/electra-small-turkish-cased-generator`](https://huggingface.co/dbmdz/electra-small-turkish-cased-generator) | [`dbmdz/electra-base-turkish-cased-generator`](https://huggingface.co/dbmdz/electra-base-turkish-cased-generator) | [`dbmdz/electra-base-turkish-mc4-cased-generator`](https://huggingface.co/dbmdz/electra-base-turkish-mc4-cased-generator) | [`dbmdz/electra-base-turkish-mc4-uncased-generator`](https://huggingface.co/dbmdz/electra-base-turkish-mc4-uncased-generator) | [`dbmdz/bert-base-turkish-cased`](https://huggingface.co/dbmdz/bert-base-turkish-cased) | [`dbmdz/bert-base-turkish-uncased`](https://huggingface.co/dbmdz/bert-base-turkish-uncased) | [`dbmdz/bert-base-turkish-128k-cased`](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) | [`dbmdz/bert-base-turkish-128k-uncased`](https://huggingface.co/dbmdz/bert-base-turkish-128k-uncased) | [`dbmdz/distilbert-base-turkish-cased`](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) | [`dbmdz/convbert-base-turkish-cased`](https://huggingface.co/dbmdz/convbert-base-turkish-cased) | [`dbmdz/convbert-base-turkish-mc4-cased`](https://huggingface.co/dbmdz/convbert-base-turkish-mc4-cased) | [`dbmdz/convbert-base-turkish-mc4-uncased`](https://huggingface.co/dbmdz/convbert-base-turkish-mc4-uncased) |\n",
|
132 |
+
"|----------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|\n",
|
133 |
+
"| Anaphor Agreement | 74.1 | 94.3 | 94.3 | 92.8 | 96.7 | 97.3 | 97.3 | 97.7 | 96.9 | 58.1 | 44.3 | 44.6 |\n",
|
134 |
+
"| Argument Str. Tran. | 86.6 | 99.6 | 99.4 | 98.7 | 99.7 | 99.6 | 99.8 | 99.1 | 97.5 | 51.9 | 58.1 | 51.3 |\n",
|
135 |
+
"| Argument Str. Ditr. | 79.3 | 96.1 | 95.5 | 95.2 | 99.8 | 96.1 | 96.1 | 96.1 | 95.4 | 64.6 | 58.6 | 64.5 |\n",
|
136 |
+
"| Binding | 70.7 | 96.2 | 91.4 | 89.6 | 99.9 | 98.5 | 97.7 | 99 | 93 | 89.1 | 49.4 | 78.4 |\n",
|
137 |
+
"| Determiners | 91.8 | 99.3 | 98.2 | 99.1 | 99.9 | 100 | 99 | 99.3 | 82.9 | 0 | 0 | 0 |\n",
|
138 |
+
"| Ellipsis | 10.6 | 49.7 | 46.3 | 49 | 87.4 | 73.6 | 96.6 | 87.5 | 13.6 | 54.7 | 57.8 | 67.9 |\n",
|
139 |
+
"| Irregular Forms | 98.7 | 97.9 | 99 | 99.8 | 98.8 | 100 | 99.9 | 99.6 | 94.1 | 82.9 | 86.6 | 95.2 |\n",
|
140 |
+
"| Island Effects | 39.1 | 35.3 | 41.8 | 44 | 49.4 | 39.8 | 60.9 | 51.2 | 47.4 | 96.7 | 99.4 | 100 |\n",
|
141 |
+
"| Nominalization | 90 | 96.6 | 97 | 95.4 | 97.4 | 97 | 98.9 | 97.4 | 95.6 | 55.2 | 59.2 | 60.6 |\n",
|
142 |
+
"| NPI Licensing | 90.9 | 96.1 | 95 | 98 | 98.2 | 97.6 | 97.2 | 95 | 92.1 | 82.1 | 95.6 | 71.9 |\n",
|
143 |
+
"| Passives | 100 | 91.2 | 93.6 | 91.6 | 82.2 | 78.1 | 84.4 | 81.3 | 98.8 | 100 | 100 | 99 |\n",
|
144 |
+
"| Quantifiers | 97.9 | 98 | 98 | 97.6 | 95.7 | 94.6 | 98 | 98.4 | 98.4 | 99 | 99 | 99 |\n",
|
145 |
+
"| Relative Clauses | 79.9 | 90.7 | 92 | 91.6 | 97.7 | 97.5 | 97 | 98.5 | 92 | 53.4 | 53.7 | 56.9 |\n",
|
146 |
+
"| Scrambling | 99.5 | 100 | 100 | 99.8 | 100 | 100 | 99.6 | 100 | 99.8 | 38.7 | 59.3 | 63.3 |\n",
|
147 |
+
"| Subject Agreement | 82.8 | 99 | 97.2 | 96.1 | 98.3 | 99.2 | 99.1 | 98.8 | 97 | 47.7 | 43.9 | 56.4 |\n",
|
148 |
+
"| Suspended Affixation | 97.5 | 99 | 99.1 | 98.8 | 100 | 100 | 100 | 100 | 100 | 25.4 | 12.8 | 23.2 |\n",
|
149 |
+
"| Model Average | 80.6 | 89.9 | 89.9 | 89.8 | 93.8 | 91.8 | 95.1 | 93.7 | 87.2 | 62.5 | 61.1 | 64.5 |\n"
|
150 |
]
|
151 |
}
|
152 |
],
|
153 |
"source": [
|
154 |
+
"headers = [\"Phenomenon\"] + [f\"[`{model_name}`](https://huggingface.co/{model_name})\" for model_name in model_names]\n",
|
155 |
"\n",
|
156 |
+
"model_results = {}\n",
|
|
|
|
|
157 |
"\n",
|
158 |
"for model_name in model_names:\n",
|
159 |
+
" current_model_results = {}\n",
|
|
|
160 |
" with open(model_name_evaluation_filename_mapping[model_name], \"rt\") as f_p:\n",
|
|
|
161 |
" for line in f_p:\n",
|
162 |
" data = json.loads(line)\n",
|
163 |
"\n",
|
164 |
" current_task_name = data[\"file_name\"]\n",
|
165 |
+
" current_task_accuracy = round(data[\"accuracy\"], 1)\n",
|
166 |
+
" current_task_phenomenon = task_phenomenon_mapping[current_task_name]\n",
|
167 |
" \n",
|
168 |
+
" current_model_results[current_task_phenomenon] = current_task_accuracy\n",
|
169 |
+
"\n",
|
170 |
+
" model_average = list(current_model_results.values())\n",
|
171 |
+
" model_average = np.mean(model_average)\n",
|
172 |
+
" model_average = round(model_average, 1)\n",
|
173 |
+
"\n",
|
174 |
+
" current_model_results[\"Model Average\"] = model_average\n",
|
175 |
"\n",
|
176 |
+
" model_results[model_name] = current_model_results\n",
|
|
|
|
|
|
|
|
|
177 |
"\n",
|
178 |
+
"table = []\n",
|
179 |
+
"\n",
|
180 |
+
"phenomenons.append(\"Model Average\")\n",
|
181 |
+
"\n",
|
182 |
+
"for phenomenon in phenomenons:\n",
|
183 |
+
" current_row = []\n",
|
184 |
+
"\n",
|
185 |
+
" current_row.append(phenomenon)\n",
|
186 |
+
"\n",
|
187 |
+
" for model_name in model_names:\n",
|
188 |
+
" current_phenomenon_accuracy = model_results[model_name][phenomenon]\n",
|
189 |
+
" current_row.append(current_phenomenon_accuracy)\n",
|
190 |
+
"\n",
|
191 |
+
" table.append(current_row)\n",
|
192 |
+
" \n",
|
193 |
+
"print(tabulate(table, headers=headers, tablefmt=\"github\"))"
|
194 |
]
|
195 |
}
|
196 |
],
|
|
|
210 |
"name": "python",
|
211 |
"nbconvert_exporter": "python",
|
212 |
"pygments_lexer": "ipython3",
|
213 |
+
"version": "3.13.3"
|
214 |
}
|
215 |
},
|
216 |
"nbformat": 4,
|