Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
100K<n<1M
License:
add reader for BTC
Browse files- broad_twitter_corpus.py +165 -0
- dataset_infos.json +1 -0
broad_twitter_corpus.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2020 HuggingFace Datasets Authors.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
# Lint as: python3
|
| 17 |
+
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
|
| 18 |
+
|
| 19 |
+
import os
|
| 20 |
+
|
| 21 |
+
import datasets
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
logger = datasets.logging.get_logger(__name__)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
_CITATION = """\
|
| 28 |
+
@inproceedings{derczynski2016broad,
|
| 29 |
+
title={Broad twitter corpus: A diverse named entity recognition resource},
|
| 30 |
+
author={Derczynski, Leon and Bontcheva, Kalina and Roberts, Ian},
|
| 31 |
+
booktitle={Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers},
|
| 32 |
+
pages={1169--1179},
|
| 33 |
+
year={2016}
|
| 34 |
+
}
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
_DESCRIPTION = """\
|
| 38 |
+
This is the Broad Twitter corpus, a dataset of tweets collected over stratified times, places and social uses.
|
| 39 |
+
The goal is to represent a broad range of activities, giving a dataset more representative of the language used
|
| 40 |
+
in this hardest of social media formats to process. Further, the BTC is annotated for named entities.
|
| 41 |
+
|
| 42 |
+
For more details see [https://aclanthology.org/C16-1111/](https://aclanthology.org/C16-1111/)
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
_URL = "https://github.com/GateNLP/broad_twitter_corpus/archive/refs/heads/master.zip"
|
| 46 |
+
_subpath = "broad_twitter_corpus-master/"
|
| 47 |
+
_A_FILE = _subpath + "a.conll"
|
| 48 |
+
_B_FILE = _subpath + "b.conll"
|
| 49 |
+
_E_FILE = _subpath + "e.conll"
|
| 50 |
+
_F_FILE = _subpath + "f.conll"
|
| 51 |
+
_G_FILE = _subpath + "g.conll"
|
| 52 |
+
_H_FILE = _subpath + "h.conll"
|
| 53 |
+
|
| 54 |
+
# _TRAINING_FILE = "train.txt"
|
| 55 |
+
_DEV_FILE = _H_FILE
|
| 56 |
+
_TEST_FILE = _F_FILE
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class BroadTwitterCorpusConfig(datasets.BuilderConfig):
|
| 60 |
+
"""BuilderConfig for BroadTwitterCorpus"""
|
| 61 |
+
|
| 62 |
+
def __init__(self, **kwargs):
|
| 63 |
+
"""BuilderConfig for BroadTwitterCorpus.
|
| 64 |
+
|
| 65 |
+
Args:
|
| 66 |
+
**kwargs: keyword arguments forwarded to super.
|
| 67 |
+
"""
|
| 68 |
+
super(BroadTwitterCorpusConfig, self).__init__(**kwargs)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class BroadTwitterCorpus(datasets.GeneratorBasedBuilder):
|
| 72 |
+
"""BroadTwitterCorpus dataset."""
|
| 73 |
+
|
| 74 |
+
BUILDER_CONFIGS = [
|
| 75 |
+
BroadTwitterCorpusConfig(name="broad-twitter-corpus", version=datasets.Version("1.0.0"), description="Broad Twitter Corpus"),
|
| 76 |
+
]
|
| 77 |
+
|
| 78 |
+
def _info(self):
|
| 79 |
+
return datasets.DatasetInfo(
|
| 80 |
+
description=_DESCRIPTION,
|
| 81 |
+
features=datasets.Features(
|
| 82 |
+
{
|
| 83 |
+
"id": datasets.Value("string"),
|
| 84 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
| 85 |
+
"ner_tags": datasets.Sequence(
|
| 86 |
+
datasets.features.ClassLabel(
|
| 87 |
+
names=[
|
| 88 |
+
"O",
|
| 89 |
+
"B-PER",
|
| 90 |
+
"I-PER",
|
| 91 |
+
"B-ORG",
|
| 92 |
+
"I-ORG",
|
| 93 |
+
"B-LOC",
|
| 94 |
+
"I-LOC",
|
| 95 |
+
]
|
| 96 |
+
)
|
| 97 |
+
),
|
| 98 |
+
}
|
| 99 |
+
),
|
| 100 |
+
supervised_keys=None,
|
| 101 |
+
homepage="https://aclanthology.org/C16-1111/",
|
| 102 |
+
citation=_CITATION,
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
def _split_generators(self, dl_manager):
|
| 106 |
+
"""Returns SplitGenerators."""
|
| 107 |
+
downloaded_file = dl_manager.download_and_extract(_URL)
|
| 108 |
+
|
| 109 |
+
data_files = {
|
| 110 |
+
"a": os.path.join(downloaded_file, _A_FILE),
|
| 111 |
+
"b": os.path.join(downloaded_file, _B_FILE),
|
| 112 |
+
"e": os.path.join(downloaded_file, _E_FILE),
|
| 113 |
+
"f": os.path.join(downloaded_file, _F_FILE),
|
| 114 |
+
"g": os.path.join(downloaded_file, _G_FILE),
|
| 115 |
+
"h": os.path.join(downloaded_file, _H_FILE),
|
| 116 |
+
"dev": os.path.join(downloaded_file, _DEV_FILE),
|
| 117 |
+
"test": os.path.join(downloaded_file, _TEST_FILE),
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
"""
|
| 121 |
+
btc_section_a = datasets.SplitGenerator(name="BTC_A", gen_kwargs={"filepath": data_files["a"]})
|
| 122 |
+
btc_section_b = datasets.SplitGenerator(name="BTC_B", gen_kwargs={"filepath": data_files["b"]})
|
| 123 |
+
btc_section_e = datasets.SplitGenerator(name="BTC_E", gen_kwargs={"filepath": data_files["e"]})
|
| 124 |
+
btc_section_f = datasets.SplitGenerator(name="BTC_F", gen_kwargs={"filepath": data_files["f"]})
|
| 125 |
+
btc_section_g = datasets.SplitGenerator(name="BTC_G", gen_kwargs={"filepath": data_files["g"]})
|
| 126 |
+
btc_section_h = datasets.SplitGenerator(name="BTC_H", gen_kwargs={"filepath": data_files["h"]})
|
| 127 |
+
"""
|
| 128 |
+
return [
|
| 129 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN,
|
| 130 |
+
gen_kwargs={"filepaths": [data_files['a'], data_files['b'], data_files['e'], data_files['g']]}
|
| 131 |
+
),
|
| 132 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": [data_files["dev"]]}),
|
| 133 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": [data_files["test"]]}),
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
def _generate_examples(self, filepaths):
|
| 137 |
+
guid = 0
|
| 138 |
+
for filepath in filepaths:
|
| 139 |
+
with open(filepath, encoding="utf-8") as f:
|
| 140 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
| 141 |
+
tokens = []
|
| 142 |
+
ner_tags = []
|
| 143 |
+
for line in f:
|
| 144 |
+
if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n":
|
| 145 |
+
if tokens:
|
| 146 |
+
yield guid, {
|
| 147 |
+
"id": str(guid),
|
| 148 |
+
"tokens": tokens,
|
| 149 |
+
"ner_tags": ner_tags,
|
| 150 |
+
}
|
| 151 |
+
guid += 1
|
| 152 |
+
tokens = []
|
| 153 |
+
ner_tags = []
|
| 154 |
+
else:
|
| 155 |
+
# btc entries are tab separated
|
| 156 |
+
fields = line.split("\t")
|
| 157 |
+
tokens.append(fields[0])
|
| 158 |
+
ner_tags.append(fields[1].rstrip())
|
| 159 |
+
# last example
|
| 160 |
+
yield guid, {
|
| 161 |
+
"id": str(guid),
|
| 162 |
+
"tokens": tokens,
|
| 163 |
+
"ner_tags": ner_tags,
|
| 164 |
+
}
|
| 165 |
+
guid += 1 # for when files roll over
|
dataset_infos.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"broad-twitter-corpus": {"description": "This is the Broad Twitter corpus, a dataset of tweets collected over stratified times, places and social uses. \nThe goal is to represent a broad range of activities, giving a dataset more representative of the language used \nin this hardest of social media formats to process. Further, the BTC is annotated for named entities.\n\nFor more details see [https://aclanthology.org/C16-1111/](https://aclanthology.org/C16-1111/)\n", "citation": "@inproceedings{derczynski2016broad,\n title={Broad twitter corpus: A diverse named entity recognition resource},\n author={Derczynski, Leon and Bontcheva, Kalina and Roberts, Ian},\n booktitle={Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers},\n pages={1169--1179},\n year={2016}\n}\n", "homepage": "https://aclanthology.org/C16-1111/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner_tags": {"feature": {"num_classes": 7, "names": ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"], "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "broad_twitter_corpus", "config_name": "broad-twitter-corpus", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1522066, "num_examples": 5342, "dataset_name": "broad_twitter_corpus"}, "validation": {"name": "validation", "num_bytes": 514159, "num_examples": 2002, "dataset_name": "broad_twitter_corpus"}, "test": {"name": "test", "num_bytes": 621542, "num_examples": 2002, "dataset_name": "broad_twitter_corpus"}}, "download_checksums": {"https://github.com/GateNLP/broad_twitter_corpus/archive/refs/heads/master.zip": {"num_bytes": 39344594, "checksum": "4e1d1a7d0d9e7563f5df2adf078c25a7305ab6a5e74eadae123881e4d175a12f"}}, "download_size": 39344594, "post_processing_size": null, "dataset_size": 2657767, "size_in_bytes": 42002361}}
|