thbndi commited on
Commit
38c6e81
·
1 Parent(s): 36707ee

Update Mimic4Dataset.py

Browse files
Files changed (1) hide show
  1. Mimic4Dataset.py +32 -12
Mimic4Dataset.py CHANGED
@@ -240,6 +240,37 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
240
  verif=False
241
  return verif
242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
  ###########################################################RAW##################################################################
244
 
245
  def _info_raw(self):
@@ -448,21 +479,10 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
448
  label = data['label']
449
  demo=demo.drop(['label'],axis=1)
450
  if feat_tocsv:
451
- #save the features of the vector for analysis purposes if needed
452
- if self.encoding == 'concat':
453
- feats = concat_cols.copy()
454
- else:
455
- feats = list(dyn_df.columns.droplevel(0))
456
- feats.extend(list(cond_df.columns))
457
- feats.extend(list(demo.columns))
458
- df_feats = pd.DataFrame(columns=feats)
459
- path = './data/dict/'+self.config.name.replace(" ","_")+'/features_'+self.encoding+'.csv'
460
- df_feats.to_csv(path)
461
- feat_tocsv=False
462
  X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
463
  X=X.values[0]
464
 
465
-
466
  size_concat = self.size_cond+ self.size_proc * self.interval + self.size_meds * self.interval+ self.size_out * self.interval+ self.size_chart *self.interval+ self.size_lab * self.interval + 4
467
  size_aggreg = self.size_cond+ self.size_proc + self.size_meds+ self.size_out+ self.size_chart+ self.size_lab + 4
468
 
 
240
  verif=False
241
  return verif
242
 
243
+ def save_features(self,concat_cols,dyn_df,cond_df,demo):
244
+ #create csv with the description of each feature for analysis purpose
245
+ df_feats = pd.DataFrame(columns=['feature','description'])
246
+ icd = pd.read_csv(self.mimic_path+'/hosp/d_icd_diagnoses.csv.gz',compression='gzip', header=0)
247
+ items= pd.read_csv(self.mimic_path+'/icu/d_items.csv.gz',compression='gzip', header=0)
248
+
249
+ if self.encoding == 'concat':
250
+ feats = concat_cols.copy()
251
+ df_feats['feature'] = feats
252
+ for _, data in df_feats.iterrows():
253
+ txt=(items[items['itemid'] == int(data['feature'].split('_')[0])]['label']).to_string(index=False)
254
+ data['description']=txt+' at interval '+data['feature'].split('_')[1]
255
+ else:
256
+ feats = list(dyn_df.columns.droplevel(0))
257
+ for _, data in df_feats.iterrows():
258
+ data['description']=(items[items['itemid'] == int(data['feature'])]['label']).to_string(index=False)
259
+
260
+ for diag in list(cond_df.columns):
261
+ df_feats.loc[len(df_feats)] = [diag,icd[icd['icd_code'] == diag]['long_title'].to_string(index=False)]
262
+
263
+ df_feats.loc[len(df_feats)]='Age'
264
+ df_feats.loc[len(df_feats)]='gender'
265
+ df_feats.loc[len(df_feats)]='ethnicity'
266
+ df_feats.loc[len(df_feats)]='insurance'
267
+ feats.extend(list(cond_df.columns))
268
+ feats.extend(list(demo.columns))
269
+
270
+ path = './data/dict/'+self.config.name.replace(" ","_")+'/features_description_'+self.encoding+'.csv'
271
+ df_feats.to_csv(path)
272
+ feat_tocsv=False
273
+ return feat_tocsv, feats
274
  ###########################################################RAW##################################################################
275
 
276
  def _info_raw(self):
 
479
  label = data['label']
480
  demo=demo.drop(['label'],axis=1)
481
  if feat_tocsv:
482
+ feat_tocsv, feats = self.save_features(concat_cols,dyn_df,cond_df,demo)
 
 
 
 
 
 
 
 
 
 
483
  X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
484
  X=X.values[0]
485
 
 
486
  size_concat = self.size_cond+ self.size_proc * self.interval + self.size_meds * self.interval+ self.size_out * self.interval+ self.size_chart *self.interval+ self.size_lab * self.interval + 4
487
  size_aggreg = self.size_cond+ self.size_proc + self.size_meds+ self.size_out+ self.size_chart+ self.size_lab + 4
488