Update Mimic4Dataset.py
Browse files- Mimic4Dataset.py +32 -12
Mimic4Dataset.py
CHANGED
@@ -240,6 +240,37 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
240 |
verif=False
|
241 |
return verif
|
242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
###########################################################RAW##################################################################
|
244 |
|
245 |
def _info_raw(self):
|
@@ -448,21 +479,10 @@ class Mimic4Dataset(datasets.GeneratorBasedBuilder):
|
|
448 |
label = data['label']
|
449 |
demo=demo.drop(['label'],axis=1)
|
450 |
if feat_tocsv:
|
451 |
-
|
452 |
-
if self.encoding == 'concat':
|
453 |
-
feats = concat_cols.copy()
|
454 |
-
else:
|
455 |
-
feats = list(dyn_df.columns.droplevel(0))
|
456 |
-
feats.extend(list(cond_df.columns))
|
457 |
-
feats.extend(list(demo.columns))
|
458 |
-
df_feats = pd.DataFrame(columns=feats)
|
459 |
-
path = './data/dict/'+self.config.name.replace(" ","_")+'/features_'+self.encoding+'.csv'
|
460 |
-
df_feats.to_csv(path)
|
461 |
-
feat_tocsv=False
|
462 |
X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
|
463 |
X=X.values[0]
|
464 |
|
465 |
-
|
466 |
size_concat = self.size_cond+ self.size_proc * self.interval + self.size_meds * self.interval+ self.size_out * self.interval+ self.size_chart *self.interval+ self.size_lab * self.interval + 4
|
467 |
size_aggreg = self.size_cond+ self.size_proc + self.size_meds+ self.size_out+ self.size_chart+ self.size_lab + 4
|
468 |
|
|
|
240 |
verif=False
|
241 |
return verif
|
242 |
|
243 |
+
def save_features(self,concat_cols,dyn_df,cond_df,demo):
|
244 |
+
#create csv with the description of each feature for analysis purpose
|
245 |
+
df_feats = pd.DataFrame(columns=['feature','description'])
|
246 |
+
icd = pd.read_csv(self.mimic_path+'/hosp/d_icd_diagnoses.csv.gz',compression='gzip', header=0)
|
247 |
+
items= pd.read_csv(self.mimic_path+'/icu/d_items.csv.gz',compression='gzip', header=0)
|
248 |
+
|
249 |
+
if self.encoding == 'concat':
|
250 |
+
feats = concat_cols.copy()
|
251 |
+
df_feats['feature'] = feats
|
252 |
+
for _, data in df_feats.iterrows():
|
253 |
+
txt=(items[items['itemid'] == int(data['feature'].split('_')[0])]['label']).to_string(index=False)
|
254 |
+
data['description']=txt+' at interval '+data['feature'].split('_')[1]
|
255 |
+
else:
|
256 |
+
feats = list(dyn_df.columns.droplevel(0))
|
257 |
+
for _, data in df_feats.iterrows():
|
258 |
+
data['description']=(items[items['itemid'] == int(data['feature'])]['label']).to_string(index=False)
|
259 |
+
|
260 |
+
for diag in list(cond_df.columns):
|
261 |
+
df_feats.loc[len(df_feats)] = [diag,icd[icd['icd_code'] == diag]['long_title'].to_string(index=False)]
|
262 |
+
|
263 |
+
df_feats.loc[len(df_feats)]='Age'
|
264 |
+
df_feats.loc[len(df_feats)]='gender'
|
265 |
+
df_feats.loc[len(df_feats)]='ethnicity'
|
266 |
+
df_feats.loc[len(df_feats)]='insurance'
|
267 |
+
feats.extend(list(cond_df.columns))
|
268 |
+
feats.extend(list(demo.columns))
|
269 |
+
|
270 |
+
path = './data/dict/'+self.config.name.replace(" ","_")+'/features_description_'+self.encoding+'.csv'
|
271 |
+
df_feats.to_csv(path)
|
272 |
+
feat_tocsv=False
|
273 |
+
return feat_tocsv, feats
|
274 |
###########################################################RAW##################################################################
|
275 |
|
276 |
def _info_raw(self):
|
|
|
479 |
label = data['label']
|
480 |
demo=demo.drop(['label'],axis=1)
|
481 |
if feat_tocsv:
|
482 |
+
feat_tocsv, feats = self.save_features(concat_cols,dyn_df,cond_df,demo)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
X= generate_ml(dyn_df,cond_df,demo,concat_cols,self.concat)
|
484 |
X=X.values[0]
|
485 |
|
|
|
486 |
size_concat = self.size_cond+ self.size_proc * self.interval + self.size_meds * self.interval+ self.size_out * self.interval+ self.size_chart *self.interval+ self.size_lab * self.interval + 4
|
487 |
size_aggreg = self.size_cond+ self.size_proc + self.size_meds+ self.size_out+ self.size_chart+ self.size_lab + 4
|
488 |
|