Datasets:
Tasks:
Object Detection
Formats:
webdataset
Languages:
English
Size:
< 1K
ArXiv:
Tags:
webdataset
License:
import torch | |
from torch.utils.data import TensorDataset | |
import tensorflow as tf | |
import tensorflow_datasets as tfds | |
import jax.numpy as jnp | |
def get_datasets( | |
features_path='../big_model_inference/resnet18_embeddings.pt', | |
labels_path='../big_model_inference/all_cow_ids.pt' | |
): | |
embeddings_np = torch.load(features_path) | |
all_cow_ids = torch.load(labels_path) - 1 | |
# Set the seed for reproducibility | |
seed = 42 | |
torch.manual_seed(seed) | |
# Assume embeddings_np and all_cow_ids are already loaded as PyTorch tensors | |
num_samples = len(embeddings_np) | |
indices = torch.randperm(num_samples) | |
# Calculate split indices for 70/20/10 split | |
train_end = int(0.001 * num_samples) | |
val_end = int(0.2 * num_samples) | |
train_indices = indices[:train_end] | |
val_indices = indices[train_end:val_end] | |
test_indices = indices[val_end:] | |
# print(train_indices[:10]) | |
# print(val_indices[:10]) | |
# print(test_indices[:10]) | |
# assert torch.equal(train_indices[:10], torch.tensor([292622, 37548, 42432, 353497, 379054, 301165, 47066, 353666, 409458, | |
# 454581])) | |
# assert torch.equal(val_indices[:10], torch.tensor([219340, 495317, 522025, 36026, 490924, 179563, 533196, 263518, 139048, | |
# 72363])) | |
# assert torch.equal(test_indices[:10], torch.tensor([192226, 477583, 210506, 265639, 82907, 246325, 335726, 395405, 497690, | |
# 388675])) | |
# Create datasets for each split | |
train_dataset = TensorDataset(embeddings_np[train_indices], all_cow_ids[train_indices]) | |
val_dataset = TensorDataset(embeddings_np[val_indices], all_cow_ids[val_indices]) | |
test_dataset = TensorDataset(embeddings_np[test_indices], all_cow_ids[test_indices]) | |
print(f"Train set: {len(train_dataset)} samples") | |
print(f"Validation set: {len(val_dataset)} samples") | |
print(f"Test set: {len(test_dataset)} samples") | |
return train_dataset, val_dataset, test_dataset | |
def get_time_series( | |
features_path='../big_model_inference/resnet18_embeddings.pt', | |
labels_path='../big_model_inference/all_cow_ids.pt' | |
): | |
embeddings_np = torch.load(features_path) | |
all_cow_ids = torch.load(labels_path) - 1 | |
num_samples = len(embeddings_np) | |
train_end = int(0.33 * num_samples) | |
val_end = int(0.66 * num_samples) | |
# Create datasets for each split | |
train_dataset = TensorDataset(embeddings_np[:train_end], all_cow_ids[:train_end]) | |
val_dataset = TensorDataset(embeddings_np[train_end:val_end], all_cow_ids[train_end:val_end]) | |
test_dataset = TensorDataset(embeddings_np[val_end:], all_cow_ids[val_end:]) | |
print(f"Train set: {len(train_dataset)} samples") | |
print(f"Validation set: {len(val_dataset)} samples") | |
print(f"Test set: {len(test_dataset)} samples") | |
return train_dataset, val_dataset, test_dataset | |
def get_time_series_tf( | |
features_path='../big_model_inference/resnet18_embeddings.pt', | |
labels_path='../big_model_inference/all_cow_ids.pt' | |
): | |
embeddings_np = torch.load(features_path) | |
all_cow_ids = torch.load(labels_path) - 1 | |
embeddings_np = embeddings_np.numpy() | |
all_cow_ids = all_cow_ids.numpy() | |
num_samples = len(embeddings_np) | |
train_end = int(0.33 * num_samples) | |
val_end = int(0.66 * num_samples) | |
# Create datasets for each split | |
train_dataset = tf.data.Dataset.from_tensor_slices((embeddings_np[:train_end], all_cow_ids[:train_end])) | |
val_dataset = tf.data.Dataset.from_tensor_slices((embeddings_np[train_end:val_end], all_cow_ids[train_end:val_end])) | |
test_dataset = tf.data.Dataset.from_tensor_slices((embeddings_np[val_end:], all_cow_ids[val_end:])) | |
print(f"Train set: {len(train_dataset)} samples") | |
print(f"Validation set: {len(val_dataset)} samples") | |
print(f"Test set: {len(test_dataset)} samples") | |
batch_size = 32 | |
train_dataset = train_dataset.shuffle(len(train_dataset)).batch( | |
batch_size, | |
num_parallel_calls=tf.data.AUTOTUNE | |
).prefetch(tf.data.AUTOTUNE) | |
val_dataset = val_dataset.batch( | |
batch_size, | |
num_parallel_calls=tf.data.AUTOTUNE | |
).prefetch(tf.data.AUTOTUNE) | |
test_dataset = test_dataset.batch( | |
batch_size, | |
num_parallel_calls=tf.data.AUTOTUNE | |
).prefetch(tf.data.AUTOTUNE) | |
train_dataset = tfds.as_numpy(train_dataset) | |
val_dataset = tfds.as_numpy(val_dataset) | |
test_dataset = tfds.as_numpy(test_dataset) | |
return train_dataset, val_dataset, test_dataset, len(embeddings_np[0]) | |
if __name__ == "__main__": | |
train_dataset, val_dataset, test_dataset, in_features = get_time_series_tf(features_path='../big_model_inference/facebook_dinov2_base_embeddings.pt') | |
print(f"in features : {in_features}") | |
for batch in train_dataset: | |
batch = { | |
'feature' : jnp.array(batch[0]), | |
"label" : jnp.array(batch[1]) | |
} | |
print(batch) | |
break | |
for batch in val_dataset: | |
print(batch) | |
break | |
for batch in test_dataset: | |
print(batch) | |
break |