import torch from torch.utils.data import TensorDataset import tensorflow as tf import tensorflow_datasets as tfds import jax.numpy as jnp def get_datasets( features_path='../big_model_inference/resnet18_embeddings.pt', labels_path='../big_model_inference/all_cow_ids.pt' ): embeddings_np = torch.load(features_path) all_cow_ids = torch.load(labels_path) - 1 # Set the seed for reproducibility seed = 42 torch.manual_seed(seed) # Assume embeddings_np and all_cow_ids are already loaded as PyTorch tensors num_samples = len(embeddings_np) indices = torch.randperm(num_samples) # Calculate split indices for 70/20/10 split train_end = int(0.001 * num_samples) val_end = int(0.2 * num_samples) train_indices = indices[:train_end] val_indices = indices[train_end:val_end] test_indices = indices[val_end:] # print(train_indices[:10]) # print(val_indices[:10]) # print(test_indices[:10]) # assert torch.equal(train_indices[:10], torch.tensor([292622, 37548, 42432, 353497, 379054, 301165, 47066, 353666, 409458, # 454581])) # assert torch.equal(val_indices[:10], torch.tensor([219340, 495317, 522025, 36026, 490924, 179563, 533196, 263518, 139048, # 72363])) # assert torch.equal(test_indices[:10], torch.tensor([192226, 477583, 210506, 265639, 82907, 246325, 335726, 395405, 497690, # 388675])) # Create datasets for each split train_dataset = TensorDataset(embeddings_np[train_indices], all_cow_ids[train_indices]) val_dataset = TensorDataset(embeddings_np[val_indices], all_cow_ids[val_indices]) test_dataset = TensorDataset(embeddings_np[test_indices], all_cow_ids[test_indices]) print(f"Train set: {len(train_dataset)} samples") print(f"Validation set: {len(val_dataset)} samples") print(f"Test set: {len(test_dataset)} samples") return train_dataset, val_dataset, test_dataset def get_time_series( features_path='../big_model_inference/resnet18_embeddings.pt', labels_path='../big_model_inference/all_cow_ids.pt' ): embeddings_np = torch.load(features_path) all_cow_ids = torch.load(labels_path) - 1 num_samples = len(embeddings_np) train_end = int(0.33 * num_samples) val_end = int(0.66 * num_samples) # Create datasets for each split train_dataset = TensorDataset(embeddings_np[:train_end], all_cow_ids[:train_end]) val_dataset = TensorDataset(embeddings_np[train_end:val_end], all_cow_ids[train_end:val_end]) test_dataset = TensorDataset(embeddings_np[val_end:], all_cow_ids[val_end:]) print(f"Train set: {len(train_dataset)} samples") print(f"Validation set: {len(val_dataset)} samples") print(f"Test set: {len(test_dataset)} samples") return train_dataset, val_dataset, test_dataset def get_time_series_tf( features_path='../big_model_inference/resnet18_embeddings.pt', labels_path='../big_model_inference/all_cow_ids.pt' ): embeddings_np = torch.load(features_path) all_cow_ids = torch.load(labels_path) - 1 embeddings_np = embeddings_np.numpy() all_cow_ids = all_cow_ids.numpy() num_samples = len(embeddings_np) train_end = int(0.33 * num_samples) val_end = int(0.66 * num_samples) # Create datasets for each split train_dataset = tf.data.Dataset.from_tensor_slices((embeddings_np[:train_end], all_cow_ids[:train_end])) val_dataset = tf.data.Dataset.from_tensor_slices((embeddings_np[train_end:val_end], all_cow_ids[train_end:val_end])) test_dataset = tf.data.Dataset.from_tensor_slices((embeddings_np[val_end:], all_cow_ids[val_end:])) print(f"Train set: {len(train_dataset)} samples") print(f"Validation set: {len(val_dataset)} samples") print(f"Test set: {len(test_dataset)} samples") batch_size = 32 train_dataset = train_dataset.shuffle(len(train_dataset)).batch( batch_size, num_parallel_calls=tf.data.AUTOTUNE ).prefetch(tf.data.AUTOTUNE) val_dataset = val_dataset.batch( batch_size, num_parallel_calls=tf.data.AUTOTUNE ).prefetch(tf.data.AUTOTUNE) test_dataset = test_dataset.batch( batch_size, num_parallel_calls=tf.data.AUTOTUNE ).prefetch(tf.data.AUTOTUNE) train_dataset = tfds.as_numpy(train_dataset) val_dataset = tfds.as_numpy(val_dataset) test_dataset = tfds.as_numpy(test_dataset) return train_dataset, val_dataset, test_dataset, len(embeddings_np[0]) if __name__ == "__main__": train_dataset, val_dataset, test_dataset, in_features = get_time_series_tf(features_path='../big_model_inference/facebook_dinov2_base_embeddings.pt') print(f"in features : {in_features}") for batch in train_dataset: batch = { 'feature' : jnp.array(batch[0]), "label" : jnp.array(batch[1]) } print(batch) break for batch in val_dataset: print(batch) break for batch in test_dataset: print(batch) break