import faiss import numpy as np import torch import os, glob def get_results(features_path): print(features_path) embeddings_np = torch.load(features_path).numpy() all_cow_ids = torch.load("../big_model_inference/all_cow_ids.pt").numpy() mid_point = len(embeddings_np) // 2 # print(f"mid_point : {mid_point}") embeddings_np_first_half = embeddings_np[:mid_point] embeddings_np_second_half = embeddings_np[mid_point:] all_cow_ids_first_half = all_cow_ids[:mid_point] all_cow_ids_second_half = all_cow_ids[mid_point:] # # Assuming embeddings_np is your numpy array of shape (N, 512) and dtype=np.float32 d = embeddings_np_first_half.shape[1] # Dimensionality (512) nlist = 100 # Number of clusters (you can tune this parameter) m = 8 # Number of subquantizers (must be a divisor of d) nbits = 8 # Bits per subquantizer flat_index = faiss.IndexFlatL2(d) index_ivf = faiss.IndexIVFPQ(flat_index, d, nlist, m, nbits) index_ivf.nprobe = 10 index_ivf.train(embeddings_np_first_half) index_ivf.add(embeddings_np_first_half) # flat_index.add(embeddings_np_first_half) k = 6 distances, indices = index_ivf.search(embeddings_np_second_half, k) # print("Nearest neighbors (indices) for the first 10 images:") # print(indices[-10:]) # print("Corresponding distances:") # print(distances[-10:]) # Calculate top-1 and top-5 accuracy top1_correct = 0 top5_correct = 0 for i, indices_row in enumerate(indices): query_id = all_cow_ids_second_half[i] # Get cow IDs for the retrieved results retrieved_ids = [all_cow_ids_first_half[idx] for idx in indices_row] # Top-1: Check if the first result matches the query ID if retrieved_ids[0] == query_id: top1_correct += 1 # Top-5: Check if any of the first 5 results match the query ID if query_id in retrieved_ids[:5]: top5_correct += 1 # Calculate accuracy rates top1_accuracy = top1_correct / len(embeddings_np_second_half) top5_accuracy = top5_correct / len(embeddings_np_second_half) print(f"Top-1 Accuracy: {top1_accuracy:.4f}") print(f"Top-5 Accuracy: {top5_accuracy:.4f}") directory = '../big_model_inference' # replace with your directory path pattern = os.path.join(directory, '*.pt') exclude_file = 'all_cow_ids.pt' for features_path in glob.glob(pattern): if os.path.basename(features_path) != exclude_file: get_results(features_path) # print(features_path)