import glob import os # os.environ["JAX_PLATFORMS"] = "cpu" # Must be set before importing jax from model import LinearClassifier from flax import nnx import optax from data_loading import get_time_series_tf import jax.numpy as jnp import numpy as np from copy import deepcopy def loss_fn(model: LinearClassifier, batch): logits = model(batch['feature']) loss = optax.softmax_cross_entropy_with_integer_labels( logits=logits, labels=batch['label'] ).mean() return loss, logits @nnx.jit def train_step(model: LinearClassifier, optimizer: nnx.Optimizer, batch): """Train for a single step.""" grad_fn = nnx.value_and_grad(loss_fn, has_aux=True) (loss, logits), grads = grad_fn(model, batch) optimizer.update(grads) # In-place updates. @nnx.jit def eval_step(model: LinearClassifier, metrics: nnx.MultiMetric, batch): loss, logits = loss_fn(model, batch) metrics.update(loss=loss, logits=logits, labels=batch['label']) # In-place updates. def get_results(features_path): print(features_path) train_loader, val_loader, test_loader, in_features = get_time_series_tf( features_path=features_path ) model = LinearClassifier( in_features=in_features, out_features=8, rngs=nnx.Rngs(0) ) # nnx.display(model) learning_rate = 0.005 optimizer = nnx.Optimizer( model, optax.adamw(learning_rate=learning_rate) ) # nnx.display(optimizer) metrics = nnx.MultiMetric( accuracy=nnx.metrics.Accuracy(), loss=nnx.metrics.Average('loss'), ) epochs = 100 best_accuracy = 0.0 best_model = deepcopy(model) patience = 0 # train and validation goes here for epoch in range(epochs): if patience == 10: break for batch in train_loader: batch = { 'feature' : jnp.array(batch[0]), 'label' : jnp.array(batch[1]) } train_step(model, optimizer, batch) for batch in val_loader: batch = { 'feature' : jnp.array(batch[0]), 'label' : jnp.array(batch[1]) } eval_step(model, metrics, batch) # Log the test metrics. results = metrics.compute() accuracy = results['accuracy'].item() if accuracy > best_accuracy: best_accuracy = accuracy best_model = deepcopy(model) patience = 0 else: patience += 1 metrics.reset() # Reset the metrics for the next training epoch. print(f"best eval accuracy: {best_accuracy}") # testing goes here for batch in test_loader: batch = { 'feature' : jnp.array(batch[0]), 'label' : jnp.array(batch[1]) } eval_step(best_model, metrics, batch) # Log the test metrics. results = metrics.compute() accuracy = results['accuracy'].item() print(f"test accuracy: {accuracy}") directory = '../big_model_inference' # replace with your directory path pattern = os.path.join(directory, '*.pt') exclude_file = 'all_cow_ids.pt' for features_path in glob.glob(pattern): if os.path.basename(features_path) != exclude_file: get_results(features_path) # get_results('../big_model_inference/facebook_dinov2_base_embeddings.pt')