File size: 10,319 Bytes
c6a53ac 29506df c6a53ac 29506df c6a53ac 29506df c6a53ac f974dff c6a53ac f974dff a359424 633a9df 3e77983 f974dff a359424 f974dff 633a9df f974dff 617bafb f974dff 617bafb f974dff 3e77983 f974dff 92eccb2 f974dff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
---
dataset_info:
features:
- name: file_url
dtype: string
- name: approver_id
dtype: float64
- name: bit_flags
dtype: int64
- name: created_at
dtype: string
- name: down_score
dtype: int64
- name: fav_count
dtype: int64
- name: file_ext
dtype: string
- name: file_size
dtype: int64
- name: has_active_children
dtype: bool
- name: has_children
dtype: bool
- name: has_large
dtype: bool
- name: has_visible_children
dtype: bool
- name: image_height
dtype: int64
- name: image_width
dtype: int64
- name: is_banned
dtype: bool
- name: is_deleted
dtype: bool
- name: is_flagged
dtype: bool
- name: is_pending
dtype: bool
- name: large_file_url
dtype: string
- name: last_comment_bumped_at
dtype: string
- name: last_commented_at
dtype: string
- name: last_noted_at
dtype: string
- name: md5
dtype: string
- name: media_asset_created_at
dtype: string
- name: media_asset_duration
dtype: float64
- name: media_asset_file_ext
dtype: string
- name: media_asset_file_key
dtype: string
- name: media_asset_file_size
dtype: int64
- name: media_asset_id
dtype: int64
- name: media_asset_image_height
dtype: int64
- name: media_asset_image_width
dtype: int64
- name: media_asset_is_public
dtype: bool
- name: media_asset_md5
dtype: string
- name: media_asset_pixel_hash
dtype: string
- name: media_asset_status
dtype: string
- name: media_asset_updated_at
dtype: string
- name: media_asset_variants
dtype: string
- name: parent_id
dtype: float64
- name: pixiv_id
dtype: float64
- name: preview_file_url
dtype: string
- name: rating
dtype: string
- name: score
dtype: int64
- name: source
dtype: string
- name: tag_count
dtype: int64
- name: tag_count_artist
dtype: int64
- name: tag_count_character
dtype: int64
- name: tag_count_copyright
dtype: int64
- name: tag_count_general
dtype: int64
- name: tag_count_meta
dtype: int64
- name: tag_string
dtype: string
- name: tag_string_artist
dtype: string
- name: tag_string_character
dtype: string
- name: tag_string_copyright
dtype: string
- name: tag_string_general
dtype: string
- name: tag_string_meta
dtype: string
- name: up_score
dtype: int64
- name: updated_at
dtype: string
- name: uploader_id
dtype: int64
- name: id
dtype: int64
splits:
- name: train
num_bytes: 20592115226
num_examples: 8835689
download_size: 7359040645
dataset_size: 20592115226
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: mit
task_categories:
- text-to-image
- image-classification
language:
- en
- ja
pretty_name: Danbooru 2025 Metadata
size_categories:
- 1M<n<10M
---
# Dataset Card for Danbooru 2025 Metadata
**Current max id: `8,877,698` (Feb.18, 2025)**
This dataset repo provides comprehensive, up-to-date metadata for the Danbooru booru site. All metadata was freshly scraped starting on January 2, 2025, resulting in more extensive tag annotations for older posts, fewer errors, and reduced occurrences of non-labelled AI-generated images in the data.
## Dataset Details
**What is this?**
A refreshed, Parquet-formatted metadata dump of Danbooru, current as of Feb.18, 2025.
**Why choose this over other Danbooru scrapes?**
The dataset includes all available metadata in one place, eliminating the need to gather and merge data from multiple sources manually.
It features more annotations and fewer untagged or mislabeled AI-generated images than older scrapes. Additionally, historical tag renames and additions are accurately reflected, ensuring easier and more reliable downstream use.
## Uses
The dataset can be loaded or filtered with the Huggingface `datasets` library:
```python
from datasets import Dataset, load_dataset
danbooru_dataset = load_dataset("trojblue/danbooru2025-metadata", split="train")
df = danbooru_dataset.to_pandas()
```
## Dataset Structure
For better compatability, the columns are converted from danbooru jsons with minimal change:
```
Index(['approver_id', 'bit_flags', 'created_at', 'down_score', 'fav_count',
'file_ext', 'file_size', 'file_url', 'has_active_children',
'has_children', 'has_large', 'has_visible_children', 'id',
'image_height', 'image_width', 'is_banned', 'is_deleted', 'is_flagged',
'is_pending', 'large_file_url', 'last_comment_bumped_at',
'last_commented_at', 'last_noted_at', 'md5', 'media_asset_created_at',
'media_asset_duration', 'media_asset_file_ext', 'media_asset_file_key',
'media_asset_file_size', 'media_asset_id', 'media_asset_image_height',
'media_asset_image_width', 'media_asset_is_public', 'media_asset_md5',
'media_asset_pixel_hash', 'media_asset_status',
'media_asset_updated_at', 'media_asset_variants', 'parent_id',
'pixiv_id', 'preview_file_url', 'rating', 'score', 'source',
'tag_count', 'tag_count_artist', 'tag_count_character',
'tag_count_copyright', 'tag_count_general', 'tag_count_meta',
'tag_string', 'tag_string_artist', 'tag_string_character',
'tag_string_copyright', 'tag_string_general', 'tag_string_meta',
'up_score', 'updated_at', 'uploader_id'],
dtype='object')
```
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>approver_id</th>
<th>bit_flags</th>
<th>created_at</th>
<th>down_score</th>
<th>fav_count</th>
<th>file_ext</th>
<th>file_size</th>
<th>file_url</th>
<th>has_active_children</th>
<th>has_children</th>
<th>...</th>
<th>tag_count_meta</th>
<th>tag_string</th>
<th>tag_string_artist</th>
<th>tag_string_character</th>
<th>tag_string_copyright</th>
<th>tag_string_general</th>
<th>tag_string_meta</th>
<th>up_score</th>
<th>updated_at</th>
<th>uploader_id</th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>NaN</td>
<td>0</td>
<td>2015-08-07T23:23:45.072-04:00</td>
<td>0</td>
<td>66</td>
<td>jpg</td>
<td>4134797</td>
<td>https://cdn.donmai.us/original/a1/b3/a1b3d0fa9...</td>
<td>False</td>
<td>False</td>
<td>...</td>
<td>3</td>
<td>1girl absurdres ass bangle bikini black_bikini...</td>
<td>kyouka.</td>
<td>marie_(splatoon)</td>
<td>splatoon_(series) splatoon_1</td>
<td>1girl ass bangle bikini black_bikini blush bra...</td>
<td>absurdres commentary_request highres</td>
<td>15</td>
<td>2024-06-25T15:32:44.291-04:00</td>
<td>420773</td>
</tr>
<tr>
<th>1</th>
<td>NaN</td>
<td>0</td>
<td>2008-03-05T01:52:28.194-05:00</td>
<td>0</td>
<td>7</td>
<td>jpg</td>
<td>380323</td>
<td>https://cdn.donmai.us/original/d6/10/d6107a13b...</td>
<td>False</td>
<td>False</td>
<td>...</td>
<td>2</td>
<td>1girl aqua_hair bad_id bad_pixiv_id guitar hat...</td>
<td>shimeko</td>
<td>hatsune_miku</td>
<td>vocaloid</td>
<td>1girl aqua_hair guitar instrument long_hair so...</td>
<td>bad_id bad_pixiv_id</td>
<td>4</td>
<td>2018-01-23T00:32:10.080-05:00</td>
<td>1309</td>
</tr>
<tr>
<th>2</th>
<td>85307.0</td>
<td>0</td>
<td>2015-08-07T23:26:12.355-04:00</td>
<td>0</td>
<td>10</td>
<td>jpg</td>
<td>208409</td>
<td>https://cdn.donmai.us/original/a1/2c/a12ce629f...</td>
<td>False</td>
<td>False</td>
<td>...</td>
<td>1</td>
<td>1boy 1girl blush boots carrying closed_eyes co...</td>
<td>yuuryuu_nagare</td>
<td>jon_(pixiv_fantasia_iii) race_(pixiv_fantasia)</td>
<td>pixiv_fantasia pixiv_fantasia_3</td>
<td>1boy 1girl blush boots carrying closed_eyes da...</td>
<td>commentary_request</td>
<td>3</td>
<td>2022-05-25T02:26:06.588-04:00</td>
<td>95963</td>
</tr>
</tbody>
</table>
</div>
## Dataset Creation
We scraped all post IDs on Danbooru from 1 up to the latest. Some restricted tags (e.g. `loli`) were hidden by the site and require a gold account to access, so they are not present.
For a more complete (but older) metadata reference, you may wish to combine this with Danbooru2021 or similar previous scrapes.
The scraping process used a pool of roughly 400 IPs over six hours, ensuring consistent tag definitions. Below is a simplified example of the process used to convert the metadata into Parquet:
```python
import pandas as pd
from pandarallel import pandarallel
# Initialize pandarallel
pandarallel.initialize(nb_workers=4, progress_bar=True)
def flatten_dict(d, parent_key='', sep='_'):
"""
Flattens a nested dictionary.
"""
items = []
for k, v in d.items():
new_key = f"{parent_key}{sep}{k}" if parent_key else k
if isinstance(v, dict):
items.extend(flatten_dict(v, new_key, sep=sep).items())
elif isinstance(v, list):
items.append((new_key, ', '.join(map(str, v))))
else:
items.append((new_key, v))
return dict(items)
def extract_all_illust_info(json_content):
"""
Parses and flattens Danbooru JSON into a pandas Series.
"""
flattened_data = flatten_dict(json_content)
return pd.Series(flattened_data)
def dicts_to_dataframe_parallel(dicts):
"""
Converts a list of dicts to a flattened DataFrame using pandarallel.
"""
df = pd.DataFrame(dicts)
flattened_df = df.parallel_apply(lambda row: extract_all_illust_info(row.to_dict()), axis=1)
return flattened_df
```
### Recommendations
Users should be aware of potential biases and limitations, including the presence of adult content in some tags. More details and mitigations may be needed. |