--- dataset_name: europarlvote pretty_name: EuroParlVote paperswithcode_id: null task_categories: - text-classification tasks: - gender-classification - stance-detection - vote-prediction multilinguality: multilingual language: - bg - cs - da - de - el - en - es - et - fi - fr - ga - hr - hu - it - lt - lv - mt - nl - pl - pt - ro - sk - sl - sv license: cc-by-nc-4.0 size_categories: - 10K --- # EuroParlVote EuroParlVote links **European Parliament debate speeches** to **roll-call votes** and **MEP demographics** (gender, age, country, political group) across up to **24 EU languages**. It supports two primary benchmark tasks: 1. **Gender Classification** – predict the MEP’s gender from a debate speech. 2. **Vote Prediction** – predict a FOR/AGAINST vote from the topic and speech (optionally with demographic context). ## Dataset Details - **Curated by:** Jinrui Yang, Xudong Han, Timothy Baldwin - **Funded by:** Melbourne Research Scholarship; LIEF HPC-GPGPU Facility (LE170100200) - **Shared by:** University of Melbourne - **Language(s):** see list above (`language`) - **License:** CC BY-NC 4.0 ### Dataset Sources - **Repository:** [https://huggingface.co/datasets/unimelb-nlp/EuroParlVote](https://huggingface.co/datasets/unimelb-nlp/EuroParlVote) - **Paper:** _Demographics and Democracy: Benchmarking LLMs’ Gender Bias and Political Leaning in European Parliament_ (EMNLP 2024, camera-ready) - **Demo:** [[EuroParlVote website](https://parlvote-demo.vercel.app/)] ## Uses ### Direct Use - Benchmark LLM fairness/bias in political discourse. - Multilingual political text classification and vote prediction. - Study demographic effects (gender, group) on model behavior. ### Out-of-Scope Use - Real-time vote forecasting or influencing political processes. - Targeting individuals or groups. - Disinformation or harassment. ## Dataset Structure ### File Structure The dataset is split into **train**, **dev**, and **test** (~8:1:1). This example shows the `dev_set.csv` structure. ### Columns | Column | Type | Description | |--------------------|---------|-------------| | `Chapter` | float | Debate chapter number | | `Chapter_ID` | string | Debate chapter unique identifier | | `Act_ID` | string | Legislative act ID (may be "MISSING") | | `Report_ID` | string | Parliamentary report ID | | `Debate_ID` | string | Unique debate ID + language suffix | | `Vote_ID` | int | Unique roll-call vote ID | | `Vote_Description` | string | English description of the vote topic | | `Vote_Timestamp` | string | Date-time of the vote | | `Language` | string | ISO language code of the speech | | `Speaker` | string | Speaker’s full name | | `MEP_ID` | int | Unique MEP identifier | | `Party` | string | Party affiliation (if available) | | `Role` | string | Role in debate (e.g., rapporteur) | | `CODICT` | int | Speaker unique code | | `Speaker_Type` | string | Type of speaker (e.g., MEP, Chair) | | `Start_Time` | string | Start time (uniform in this split) | | `End_Time` | string | End time (uniform in this split) | | `Title_[XX]` | string | Debate title in language `XX` (24 variants, e.g., Title_EN, Title_FR, Title_DE) | | `Speech` | string | Full debate speech text | | `position` | string | Vote label: FOR / AGAINST | | `country_code_x` | string | Country code (original source) | | `group_code` | string | Political group code (8 possible) | | `first_name` | string | MEP first name | | `last_name` | string | MEP last name | | `country_code_y` | string | Country code (from demographic scrape) | | `date_of_birth` | string | Date of birth (YYYY-MM-DD) | | `email` | string | Public MEP email (if available) | | `facebook` | string | Facebook profile URL (if available) | | `twitter` | string | Twitter/X profile URL (if available) | | `gender` | string | Binary label: MALE / FEMALE | **Note:** Title columns cover all official EU languages; `Speech` is in the original debate language (`Language`). ### Label Distribution (dev split) - **position**: `FOR` and `AGAINST` are balanced in dev/test. - **gender**: MALE, FEMALE. ## Dataset Creation ### Curation Rationale Existing multilingual political datasets rarely link actual speeches to **real-world vote outcomes** and demographics, making fairness and bias studies difficult. This dataset bridges that gap. ### Source Data - Votes from **HowTheyVote.eu**. - Debates aligned via vote metadata references. - Demographics from Wikipedia & official EP sources. ### Processing - Removed abstentions & missing topic/speech. - Gender inferred from pronouns and manually checked. ### Annotation - Gender labels created via semi-automatic heuristics, with manual validation. - Vote labels come directly from official roll-call data. ### Sensitive Information - Contains names, countries, political groups of public figures (MEPs). - Binary gender labels do not reflect all identities. ## Bias, Risks, and Limitations - Binary gender assumption. - Political group may not fully capture ideology. - Translation hurts performance; originals recommended. - Biases in speeches may reflect political context, not individual ideology. ## Citation **BibTeX:** ```bibtex @inproceedings{yang2024europarlvote, title={Demographics and Democracy: Benchmarking LLMs’ Gender Bias and Political Leaning in European Parliament}, author={Yang, Jinrui and Han, Xudong and Baldwin, Timothy}, booktitle={Proceedings of the 8th International Conference on Natural Language and Speech Processing}, year={2025} }