--- pretty_name: "Multi-EuP v2: European Parliament Debates with MEP Metadata (24 languages)" dataset_name: multi-eup-v2 configs: - config_name: default data_files: "clean_all_with_did_qid.MEP.csv" license: cc-by-4.0 multilinguality: multilingual task_categories: - text-classification - text-retrieval - text-generation language: - bg - cs - da - de - el - en - es - et - fi - fr - ga - hr - hu - it - lt - lv - mt - nl - pl - pt - ro - sk - sl - sv size_categories: - 10K`** and **per-language debate/vote linkage IDs `qid_`**. - **Curated by:** Jinrui Yang, Fan Jiang, Timothy Baldwin - **Funded by:** Melbourne Research Scholarship; LIEF HPC-GPGPU Facility (LE170100200) - **Shared by:** University of Melbourne - **Language(s) (NLP):** `bg, cs, da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv` (24 total) - **License:** cc-by-4.0 ### Dataset Sources - **Repository:** [https://github.com/jrnlp/MLIR_language_bias] - **Paper:** https://aclanthology.org/2024.mrl-1.23/ ## Uses ### Direct Use - **Text classification:** predict `gender`, `PARTY`, or `country` from `TEXT`. - **Stance/vote prediction:** link `qid_` to external roll-call vote labels. - **Multilingual representation learning:** train/evaluate models across 24 EU languages. - **Information retrieval:** index `TEXT` and use `title_*`/`qid_*` as multilingual query anchors. ### Out-of-Scope Use - Inferring private attributes beyond public MEP metadata. - Automated profiling for sensitive decisions. - Misrepresenting model outputs as factual statements. ## Dataset Structure Each row corresponds to a single speech/document. **Core fields:** - `did` *(string)* — unique speech ID - `TEXT` *(string)* — speech text - `DATE` *(string/date)* — debate date - `LANGUAGE` *(string)* — language code - `NAME` *(string)* — MEP name - `MEPID` *(string)* — MEP ID - `PARTY` *(string)* — political group - `country` *(string)* — MEP's country - `gender` *(string)* — `Female`, `Male`, or `Unknown` - Additional provenance fields: `PRESIDENT`, `TEXTID`, `CODICT`, `VOD-START`, `VOD-END` **Multilingual metadata:** - `title_` *(string)* — debate title in that language - `qid_` *(string)* — debate/vote linkage ID in that language **Splits:** Single CSV, no predefined splits. **Basic stats:** - Rows: 50,337 - Languages: 24 - Top political groups: PPE 8,869; S-D 8,468; Renew 5,313; ECR 4,130; Verts/ALE 4,001; ID 3,286; The Left 2,951; NI 2,539; GUE/NGL 468 - Gender counts: Female 25,536; Male 23,461; Unknown 349 - Top countries: Germany 7,226; France 6,158; Poland 3,706; Spain 3,312; Italy 3,222; Netherlands 1,924; Greece 1,756; Romania 1,701; Czechia 1,661; Portugal 1,150; Belgium 1,134; Hungary 1,106 ## Dataset Creation ### Curation Rationale Support multilingual political text research, enabling standardized tasks in gender/group prediction, stance/vote prediction, and IR. ### Source Data #### Data Collection and Processing - **Source:** Official EP debates. - **Processing:** metadata linking, language verification, deduplication, multilingual title extraction. - **Quality checks:** consistency in language tags and IDs. #### Who are the source data producers? MEPs speaking in plenary debates; titles from official EP records. ### Annotations #### Annotation process Metadata compiled from public records; no manual stance labels. #### Personal and Sensitive Information Contains names and political opinions of public officials. ## Bias, Risks, and Limitations - Domain bias: formal political discourse. - Risk in demographic inference tasks. - Language/script differences affect comparability. ### Recommendations - Report per-language metrics. - Avoid over-claiming causal interpretations. ## Citation **BibTeX:** ```bibtex @inproceedings{yang-etal-2024-language-bias, title = {Language Bias in Multilingual Information Retrieval: The Nature of the Beast and Mitigation Methods}, author = {Yang, Jinrui and Jiang, Fan and Baldwin, Timothy}, booktitle = {Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)}, year = {2024}, pages = {280--292}, publisher = {Association for Computational Linguistics}, url = {https://aclanthology.org/2024.mrl-1.23/}, doi = {10.18653/v1/2024.mrl-1.23} } ``` **APA:** Yang, J., Jiang, F., & Baldwin, T. (2024). *Language Bias in Multilingual Information Retrieval: The Nature of the Beast and Mitigation Methods*. In MRL 2024. ACL. ## Contact jinrui.yang@student.unimelb.edu.au