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Introduction 1

Objective: predict the channel state information (CSI) in a typical 5G
cell in which users move with different velocities

Benefit: enhancing the performance of wireless systems by allowing to
adjust the transmission strategies based on the channel prediction

Challenges:
● obtaining precise CSI is difficult because of the fast-changing

channel conditions caused by multi-path fading

● linear predictors such as autoregressive (AR) models or Kalman
filters (KFs) require
− the knowledge of the Doppler frequency
− storing a large number of linear predictors (one for each velocity

range)

Contributions 2
● We adapt both the Transformer and the Sequence-to-Sequence

with attention (Seq2Seq-attn) model to the channel prediction task

● We introduce novel ordering techniques in these models to make
them robust in adapting to CSI sequences of any length

● We do not make any assumptions about the users’ velocities

System Model 3
● Base station (BS) with M antennas

● Users with single antenna moving with different velocities

● CSI remains constant for the duration of a slot Tslot

● Each frame contains Nslot slots

● hi ∈ CM represents the ith generic slot of the CSI time series

The goal of multi-step CSI prediction is to find the best estimator
f ∶ CM×` → CM×δ which predicts the CSI vectors {hi}`+δi=`+1 based
on preceding ` observations {hi}`i=1 with ` + δ ≤ Nslot

● Only noisy observations are available for training the models

ȟi ← hi +ni (1)
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● Differently from the original
model, we introduce a novel
reverse positional encoding
(RPE) in the encoder

● The RPE enhances the
robustness of the model to
sequences of variable lengths,
as the PE linked to the latest
known slots remains consistent
for shorter or longer
sequences

● The RPE can be obtained by
first computing the PE

PE(j, 2i) = sin(j/(100002i/dmodel))
PE(j, 2i + 1) = cos(j/(100002i/dmodel))

and then by reversing the order
with respect to the position
index j

Seq2Seq-attn-R Model 5
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● The Seq2Seq model comprises an encoder and a decoder neural
network, which are both recurrent neural networks (RNNs), e.g.,
gated recurrent units (GRUs)

● The encoder RNN encodes the input sequence to produce a final
state which in turn is used as initial state for the decoder RNN

● To encourage the decoder to leverage the important parts of the
encoder outputs, an attention mechanism precedes the decoder
GRU

● We reverse the encoder outputs to ensure that the attention scores
linked to the latest known slots remain consistent for shorter or
longer sequences

Simulation Setup 6
● Scenario “BERLIN UMa NLOS” from QuadriGa (CSI with 25 paths)

● Nsamples = 150, 000 CSI sequences

● Nslot = 20

● Tslot = 0.5 ms

● Center frequency 2.62 GHz

● M = 32 antennas (8 vertical, 4 horizontal)

● Users randomly distributed over a 120 deg sector

● Users’ velocities between 0 km/h and 120 km/h

NMSE vs. prediction step 7

` = 14, δ = 6, SNR=15 dB (different from training)
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● The proposed models
outperform the others

NMSE vs. velocity 8

` = 8, δ = 2, SNR=15 dB (different from training)
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● The proposed models exhibit
superior performance across
various velocity ranges

● All models exhibit a smaller
NMSE in the range of
[20, 30] Km/h as opposed to
the range of [80, 100] Km/h
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