vedantpuri commited on
Commit
33eb146
·
verified ·
1 Parent(s): ca07197

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -49
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- dataset_name: LPBF Additive Manufacturing Dataset
3
  tags:
4
  - physics
5
  - additive-manufacturing
@@ -12,48 +12,7 @@ language: []
12
  paper: https://arxiv.org/abs/2508.12594
13
  ---
14
 
15
- # Laser Powder Bed Fusion (LPBF) Additive Manufacturing Dataset
16
-
17
- As part of our paper **[FLARE: Fast Low-Rank Attention Routing Engine](https://huggingface.co/papers/2508.12594)** ([arXiv:2508.12594](https://arxiv.org/abs/2508.12594)), we release a new **3D field prediction benchmark** derived from numerical simulations of the **Laser Powder Bed Fusion (LPBF)** additive manufacturing process.
18
-
19
- This dataset is designed for evaluating neural surrogate models on **3D field prediction tasks** over complex geometries with up to **50,000 nodes**. We believe this benchmark will be useful for researchers working on graph neural networks, mesh-based learning, surrogate PDE modeling, or 3D foundation models.
20
-
21
- ---
22
-
23
- ## Dataset Overview
24
-
25
- In metal additive manufacturing (AM), subtle variations in design geometry can cause residual stresses and shape distortion during the build process, leading to part inaccuracies or failures. We simulate the LPBF process on a set of complex 3D CAD geometries to generate a benchmark dataset where the goal is to **predict the vertical (Z) displacement field** of the printed part.
26
-
27
- | Split | # Samples | Max # Nodes / sample |
28
- |--------------|-----------|----------------------|
29
- | Train | 1,100 | ~50,000 |
30
- | Test | 290 | ~50,000 |
31
-
32
- Each sample consists of:
33
-
34
- - `points`: array of shape `(N, 3)` (x, y, z coordinates of mesh nodes)
35
- - optionally `connectivity`: array specifying axis-aligned hexahedral elements
36
- - `displacement_z`: array of shape `(N, 1)` for the final Z-displacement field (target)
37
-
38
- ---
39
-
40
- ## Source & Generation
41
-
42
- - Geometries are taken from the **Fusion 360 segmentation dataset**.
43
- - Simulations performed using **Autodesk NetFabb** with Ti-6Al-4V material on a Renishaw AM250 machine.
44
- - Full thermomechanical simulation producing residual stress and displacement fields.
45
- - We applied subsampling and aspect-ratio filtering to select ~1,390 usable simulations.
46
- - The dataset focuses on **steady-state residual deformation prediction**.
47
-
48
- ---
49
-
50
- ## Benchmark Task
51
-
52
- **Task**: Given the 3D mesh coordinates of a part, predict the Z-displacement at each node after the LPBF build process (final state).
53
-
54
- This surrogate modeling task is highly relevant to the additive manufacturing field, where fast prediction of distortion can save time and cost compared to full-scale FEM simulation.
55
-
56
- ---
57
 
58
  ## Citation
59
 
@@ -73,12 +32,6 @@ If you use this dataset in your work, please cite:
73
 
74
  ---
75
 
76
- ## Future Work & Extensions
77
-
78
- We plan to expand this dataset toward larger-scale **3D shape foundation models**, and potentially include dynamic time-history fields (stress, temperature, etc.) in future releases.
79
-
80
- ---
81
-
82
  ## License
83
 
84
  MIT License
 
1
  ---
2
+ dataset_name: PDE Datasets used in FLARE paper
3
  tags:
4
  - physics
5
  - additive-manufacturing
 
12
  paper: https://arxiv.org/abs/2508.12594
13
  ---
14
 
15
+ These are the datasets used in our paper **[FLARE: Fast Low-Rank Attention Routing Engine](https://huggingface.co/papers/2508.12594)** ([arXiv:2508.12594](https://arxiv.org/abs/2508.12594)), we release a new **3D field prediction benchmark** derived from numerical simulations of the **Laser Powder Bed Fusion (LPBF)** additive manufacturing process.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ## Citation
18
 
 
32
 
33
  ---
34
 
 
 
 
 
 
 
35
  ## License
36
 
37
  MIT License