# import os import torch from datasets import DatasetInfo, GeneratorBasedBuilder, BuilderConfig, Split, SplitGenerator class LPBFConfig(BuilderConfig): def __init__(self, **kwargs): super().__init__(**kwargs) class LPBFDataset(GeneratorBasedBuilder): VERSION = "1.0.0" BUILDER_CONFIGS = [ LPBFConfig(name="default", version=VERSION, description="Laser powder bed fusion additive manufacturing dataset") ] # No fixed schema because we return a PyG graph object def _info(self): return DatasetInfo( description="Laser powder bed fusion additive manufacturing dataset", features=None, ) def _split_generators(self, dl_manager): """ After extraction, the dataset structure should look like: LPBF/train/*.pt LPBF/test/*.pt """ data_dir = dl_manager.download_and_extract( "https://huggingface.co/datasets/vedantpuri/LPBF_FLARE/resolve/main/LPBF.tar.gz" ) # if the tar contains a subdir called LPBF/ # then dl_manager extracts to something like: [...]/LPBF/ split_train = os.path.join(data_dir, "LPBF", "train") split_test = os.path.join(data_dir, "LPBF", "test") return [ SplitGenerator(name=Split.TRAIN, gen_kwargs={"data_dir": split_train}), SplitGenerator(name=Split.TEST, gen_kwargs={"data_dir": split_test}), ] def _generate_examples(self, data_dir): files = sorted([f for f in os.listdir(data_dir) if f.endswith(".pt")]) for idx, fname in enumerate(files): path = os.path.join(data_dir, fname) obj = torch.load(path, map_location="cpu") # Return a dict so HF can wrap it yield idx, {"graph": obj}