Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,4 +1,23 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
dataset_info:
|
| 3 |
features:
|
| 4 |
- name: image
|
|
@@ -35,13 +54,242 @@ dataset_info:
|
|
| 35 |
dtype: int32
|
| 36 |
splits:
|
| 37 |
- name: train
|
| 38 |
-
num_bytes:
|
| 39 |
num_examples: 20000
|
| 40 |
-
download_size:
|
| 41 |
-
dataset_size:
|
| 42 |
configs:
|
| 43 |
- config_name: default
|
| 44 |
data_files:
|
| 45 |
- split: train
|
| 46 |
path: data/train-*
|
|
|
|
| 47 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- image-classification
|
| 5 |
+
- object-detection
|
| 6 |
+
- visual-question-answering
|
| 7 |
+
- zero-shot-image-classification
|
| 8 |
+
language:
|
| 9 |
+
- en
|
| 10 |
+
tags:
|
| 11 |
+
- ego4d
|
| 12 |
+
- egocentric-vision
|
| 13 |
+
- computer-vision
|
| 14 |
+
- random-sampling
|
| 15 |
+
- video-frames
|
| 16 |
+
- first-person-view
|
| 17 |
+
- activity-recognition
|
| 18 |
+
size_categories:
|
| 19 |
+
- 10K<n<100K
|
| 20 |
+
pretty_name: Ego4D Random Views Dataset
|
| 21 |
dataset_info:
|
| 22 |
features:
|
| 23 |
- name: image
|
|
|
|
| 54 |
dtype: int32
|
| 55 |
splits:
|
| 56 |
- name: train
|
| 57 |
+
num_bytes: 21000000000
|
| 58 |
num_examples: 20000
|
| 59 |
+
download_size: 21000000000
|
| 60 |
+
dataset_size: 21000000000
|
| 61 |
configs:
|
| 62 |
- config_name: default
|
| 63 |
data_files:
|
| 64 |
- split: train
|
| 65 |
path: data/train-*
|
| 66 |
+
viewer: true
|
| 67 |
---
|
| 68 |
+
|
| 69 |
+
# Ego4D Random Views Dataset
|
| 70 |
+
|
| 71 |
+
This dataset contains **20,000 random view frames** sampled from the [Ego4D dataset](https://ego4d-data.org/) using a high-performance multi-process generation system.
|
| 72 |
+
|
| 73 |
+

|
| 74 |
+
|
| 75 |
+
## Dataset Overview
|
| 76 |
+
|
| 77 |
+
- **Total Images**: 20,000 high-quality frames
|
| 78 |
+
- **Image Format**: PNG (1024×1024 resolution)
|
| 79 |
+
- **Source**: Ego4D v2 dataset (52,665+ video files)
|
| 80 |
+
- **Sampling Method**: Multi-process random sampling with maximum diversity
|
| 81 |
+
- **Generation Time**: 797.57 seconds (~13 minutes)
|
| 82 |
+
- **Generation Speed**: 25.08 frames/second
|
| 83 |
+
- **Success Rate**: 100.0%
|
| 84 |
+
|
| 85 |
+
## Key Features
|
| 86 |
+
|
| 87 |
+
🎬 **Maximum Diversity**: Sampled from 50,000+ different Ego4D videos
|
| 88 |
+
🚀 **High Performance**: Generated using 128 parallel workers
|
| 89 |
+
📊 **Complete Metadata**: Full metadata for each frame including video source, timestamp, etc.
|
| 90 |
+
🎯 **High Quality**: 1024×1024 resolution PNG images
|
| 91 |
+
💾 **Efficient Storage**: Stored in parquet format for fast loading
|
| 92 |
+
🔍 **Rich Context**: Each frame includes video UID, timestamp, and source information
|
| 93 |
+
|
| 94 |
+
## Dataset Schema
|
| 95 |
+
|
| 96 |
+
Each sample contains:
|
| 97 |
+
|
| 98 |
+
| Field | Type | Description |
|
| 99 |
+
|-------|------|-------------|
|
| 100 |
+
| `image` | Image | The frame image (1024×1024 PNG) |
|
| 101 |
+
| `frame_id` | string | Unique frame identifier |
|
| 102 |
+
| `video_uid` | string | Original Ego4D video UID |
|
| 103 |
+
| `video_filename` | string | Source video filename |
|
| 104 |
+
| `video_path` | string | Full path to source video |
|
| 105 |
+
| `frame_idx` | int32 | Frame index in original video |
|
| 106 |
+
| `total_frames` | int32 | Total frames in source video |
|
| 107 |
+
| `timestamp_sec` | float32 | Timestamp in video (seconds) |
|
| 108 |
+
| `fps` | float32 | Video frame rate |
|
| 109 |
+
| `worker_id` | int32 | Generation worker ID |
|
| 110 |
+
| `generated_at` | string | Generation timestamp |
|
| 111 |
+
| `image_width` | int32 | Image width (1024) |
|
| 112 |
+
| `image_height` | int32 | Image height (1024) |
|
| 113 |
+
| `original_shape_*` | int32 | Original video frame dimensions |
|
| 114 |
+
|
| 115 |
+
## Usage
|
| 116 |
+
|
| 117 |
+
### Quick Start
|
| 118 |
+
|
| 119 |
+
```python
|
| 120 |
+
from datasets import load_dataset
|
| 121 |
+
|
| 122 |
+
# Load the dataset
|
| 123 |
+
dataset = load_dataset("weikaih/ego4d-random-views-20k")
|
| 124 |
+
|
| 125 |
+
# Get a sample
|
| 126 |
+
sample = dataset['train'][0]
|
| 127 |
+
image = sample['image'] # PIL Image
|
| 128 |
+
print(f"Video: {sample['video_filename']}")
|
| 129 |
+
print(f"Timestamp: {sample['timestamp_sec']:.2f}s")
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
### Exploring the Data
|
| 133 |
+
|
| 134 |
+
```python
|
| 135 |
+
import matplotlib.pyplot as plt
|
| 136 |
+
|
| 137 |
+
# Display a sample image
|
| 138 |
+
sample = dataset['train'][42]
|
| 139 |
+
plt.figure(figsize=(10, 6))
|
| 140 |
+
|
| 141 |
+
plt.subplot(1, 2, 1)
|
| 142 |
+
plt.imshow(sample['image'])
|
| 143 |
+
plt.title(f"Frame from {sample['video_uid'][:8]}...")
|
| 144 |
+
plt.axis('off')
|
| 145 |
+
|
| 146 |
+
plt.subplot(1, 2, 2)
|
| 147 |
+
plt.text(0.1, 0.8, f"Video: {sample['video_filename'][:30]}...")
|
| 148 |
+
plt.text(0.1, 0.7, f"Timestamp: {sample['timestamp_sec']:.2f}s")
|
| 149 |
+
plt.text(0.1, 0.6, f"Frame: {sample['frame_idx']}/{sample['total_frames']}")
|
| 150 |
+
plt.text(0.1, 0.5, f"FPS: {sample['fps']}")
|
| 151 |
+
plt.axis('off')
|
| 152 |
+
plt.show()
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
### PyTorch Integration
|
| 156 |
+
|
| 157 |
+
```python
|
| 158 |
+
import torch
|
| 159 |
+
from torch.utils.data import DataLoader
|
| 160 |
+
from torchvision import transforms
|
| 161 |
+
|
| 162 |
+
# Define transforms
|
| 163 |
+
transform = transforms.Compose([
|
| 164 |
+
transforms.Resize((224, 224)),
|
| 165 |
+
transforms.ToTensor(),
|
| 166 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
| 167 |
+
std=[0.229, 0.224, 0.225])
|
| 168 |
+
])
|
| 169 |
+
|
| 170 |
+
# Custom dataset class
|
| 171 |
+
class Ego4DDataset(torch.utils.data.Dataset):
|
| 172 |
+
def __init__(self, hf_dataset, transform=None):
|
| 173 |
+
self.dataset = hf_dataset
|
| 174 |
+
self.transform = transform
|
| 175 |
+
|
| 176 |
+
def __len__(self):
|
| 177 |
+
return len(self.dataset)
|
| 178 |
+
|
| 179 |
+
def __getitem__(self, idx):
|
| 180 |
+
sample = self.dataset[idx]
|
| 181 |
+
image = sample['image']
|
| 182 |
+
|
| 183 |
+
if self.transform:
|
| 184 |
+
image = self.transform(image)
|
| 185 |
+
|
| 186 |
+
return image, sample
|
| 187 |
+
|
| 188 |
+
# Create dataset and dataloader
|
| 189 |
+
pytorch_dataset = Ego4DDataset(dataset['train'], transform=transform)
|
| 190 |
+
dataloader = DataLoader(pytorch_dataset, batch_size=32, shuffle=True)
|
| 191 |
+
|
| 192 |
+
# Training loop example
|
| 193 |
+
for batch_idx, (images, metadata) in enumerate(dataloader):
|
| 194 |
+
# Your training code here
|
| 195 |
+
print(f"Batch {batch_idx}: {images.shape}")
|
| 196 |
+
if batch_idx >= 2: # Just show first few batches
|
| 197 |
+
break
|
| 198 |
+
```
|
| 199 |
+
|
| 200 |
+
### Data Analysis
|
| 201 |
+
|
| 202 |
+
```python
|
| 203 |
+
import pandas as pd
|
| 204 |
+
from collections import Counter
|
| 205 |
+
|
| 206 |
+
# Convert to pandas for analysis
|
| 207 |
+
data = []
|
| 208 |
+
for sample in dataset['train']:
|
| 209 |
+
data.append({
|
| 210 |
+
'video_uid': sample['video_uid'],
|
| 211 |
+
'timestamp_sec': sample['timestamp_sec'],
|
| 212 |
+
'fps': sample['fps'],
|
| 213 |
+
'total_frames': sample['total_frames'],
|
| 214 |
+
'worker_id': sample['worker_id']
|
| 215 |
+
})
|
| 216 |
+
|
| 217 |
+
df = pd.DataFrame(data)
|
| 218 |
+
|
| 219 |
+
# Basic statistics
|
| 220 |
+
print(f"Unique videos: {df['video_uid'].nunique()}")
|
| 221 |
+
print(f"Average FPS: {df['fps'].mean():.2f}")
|
| 222 |
+
print(f"Timestamp range: {df['timestamp_sec'].min():.2f}s - {df['timestamp_sec'].max():.2f}s")
|
| 223 |
+
|
| 224 |
+
# Video distribution
|
| 225 |
+
video_counts = Counter(df['video_uid'])
|
| 226 |
+
print(f"Samples per video - Min: {min(video_counts.values())}, Max: {max(video_counts.values())}")
|
| 227 |
+
```
|
| 228 |
+
|
| 229 |
+
## Applications
|
| 230 |
+
|
| 231 |
+
This dataset is suitable for:
|
| 232 |
+
|
| 233 |
+
- **Egocentric vision research**: First-person view understanding
|
| 234 |
+
- **Activity recognition**: Daily activity classification
|
| 235 |
+
- **Object detection**: Objects in natural settings
|
| 236 |
+
- **Scene understanding**: Indoor/outdoor scene analysis
|
| 237 |
+
- **Transfer learning**: Pre-training for egocentric tasks
|
| 238 |
+
- **Multi-modal learning**: Combining with video metadata
|
| 239 |
+
- **Temporal analysis**: Using timestamp information
|
| 240 |
+
|
| 241 |
+
## Generation Statistics
|
| 242 |
+
|
| 243 |
+
- **Target Frames**: 20,000
|
| 244 |
+
- **Generated Frames**: 20,000
|
| 245 |
+
- **Success Rate**: 100.0%
|
| 246 |
+
- **Generation Time**: 13.3 minutes
|
| 247 |
+
- **Workers Used**: 128
|
| 248 |
+
- **Processing Speed**: 25.08 frames/second
|
| 249 |
+
- **Source Videos**: 52,665+ Ego4D video files
|
| 250 |
+
- **Diversity**: Maximum diversity through distributed sampling
|
| 251 |
+
|
| 252 |
+
## Technical Details
|
| 253 |
+
|
| 254 |
+
### Sampling Strategy
|
| 255 |
+
- **Random Selection**: Both video and frame positions randomly sampled
|
| 256 |
+
- **Worker Distribution**: Videos distributed across 128 workers for diversity
|
| 257 |
+
- **Quality Control**: Automatic validation and error recovery
|
| 258 |
+
- **Metadata Preservation**: Complete provenance tracking
|
| 259 |
+
|
| 260 |
+
### Data Quality
|
| 261 |
+
- **Image Quality**: All frames validated during generation
|
| 262 |
+
- **Resolution**: Consistent 1024×1024 PNG format
|
| 263 |
+
- **Color Space**: RGB color space
|
| 264 |
+
- **Compression**: PNG lossless compression
|
| 265 |
+
- **Metadata Completeness**: 100% metadata coverage
|
| 266 |
+
|
| 267 |
+
## Citation
|
| 268 |
+
|
| 269 |
+
If you use this dataset, please cite the original Ego4D paper:
|
| 270 |
+
|
| 271 |
+
```bibtex
|
| 272 |
+
@inproceedings{grauman2022ego4d,
|
| 273 |
+
title={Ego4d: Around the world in 3,000 hours of egocentric video},
|
| 274 |
+
author={Grauman, Kristen and Westbury, Andrew and Byrnes, Eugene and others},
|
| 275 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
| 276 |
+
pages={18211--18230},
|
| 277 |
+
year={2022}
|
| 278 |
+
}
|
| 279 |
+
```
|
| 280 |
+
|
| 281 |
+
## License
|
| 282 |
+
|
| 283 |
+
This dataset follows the same license terms as the original Ego4D dataset. Please refer to the [Ego4D license](https://ego4d-data.org/pdfs/Ego4D-License.pdf) for usage terms.
|
| 284 |
+
|
| 285 |
+
## Dataset Creation
|
| 286 |
+
|
| 287 |
+
This dataset was generated using a high-performance multi-process sampling system designed for maximum diversity and efficiency. The generation process:
|
| 288 |
+
|
| 289 |
+
1. **Video Indexing**: Scanned 52,665+ Ego4D video files
|
| 290 |
+
2. **Distributed Sampling**: Used 128 parallel workers for maximum diversity
|
| 291 |
+
3. **Quality Assurance**: Validated each frame during generation
|
| 292 |
+
4. **Metadata Collection**: Captured complete provenance information
|
| 293 |
+
5. **Efficient Upload**: Used HuggingFace datasets library with parquet format
|
| 294 |
+
|
| 295 |
+
For more details on the generation process, see the [technical documentation](https://github.com/your-repo/ego4d-random-sampling).
|