import os import re import heapq import pickle import struct import contextlib import numpy as np from typing import Generator from pathlib import Path from dataclasses import dataclass, field from fsspec.spec import AbstractBufferedFile from datatrove.data import DocumentsPipeline from datatrove.io import DataFolderLike, get_datafolder from datatrove.pipeline.base import PipelineStep from datatrove.pipeline.writers.disk_base import DiskWriter from datatrove.utils.binaryio import read_tuples_from_file, seek_to_start from datatrove.utils.hashing import HashConfig, create_hash_func from datatrove.utils.logging import logger from datatrove.utils.text import TextNormConfig, ngrams from datatrove.utils.typeshelper import StatHints # http://en.wikipedia.org/wiki/Mersenne_prime _mersenne_prime = np.uint64((1 << 61) - 1) SENTINEL = (1 << 32) - 1 dataset_map = {} datasets = [] cnt = 0 def transform(dataset_idx: int, line_no: int) -> int: global cnt global dataset_map global datasets if dataset_idx not in dataset_map: dataset_map[dataset_idx] = cnt datasets.append(dataset_idx) cnt += 1 return line_no * 10000 + dataset_map[dataset_idx] @dataclass class CustomMinhashConfig: """Configuration for Min-Hash deduplication Args: n_grams: n-grams size to use num_buckets: number of buckets to use seed: random seed used to generate the hash function parameters. Should be the same on all workers to ensure they all have the same parameters """ n_grams: int = 13 num_buckets: int = 9 num_hashs: int = 128 seed: int = 1 norm_config: TextNormConfig = field(default_factory=TextNormConfig) hash_config: HashConfig = field(default_factory=HashConfig) def __str__(self): return f"{self.n_grams}ng_{self.num_buckets}bs_{self.hash_config}" @dataclass(order=True) class HashSig: """Hash signature for a given document in a given bucket Args: sig: tuple of hashes file_id: file id doc_id: document id reader_id: reader id. Used to know from where the next signature should be requested """ sig: tuple[int] doc_id: int data_index: int reader_id: int def is_from_index(self): return False def read_sigs( file: AbstractBufferedFile, config: CustomMinhashConfig, index_file: bool = False, min_hash: int = 0, max_hash: int = _mersenne_prime, ensure_order: bool = True, lines_to_buffer: int = 5, reader_id: int = 0, ) -> Generator: """Read signatures from a file Args: file: file to read from reader_id: reader id config: minhash configuration (a MinhashConfig object) index_file: is index file """ line_format = f"{config.n_grams}{config.hash_config.struct_format}{'I' if not index_file else ''}" with file as f: if f.size == 0: return seek_to_start(f, min_hash, line_format, config.hash_config.struct_format) last = None # CC-MAIN-2013-20_00000.minhash.sig file_stem = Path(file.path).name.removesuffix(".minhash.sig") data_index = 0 if len(file_stem) == 21: dataset_year = int(file_stem[8:12]) dataset_num = int(file_stem[13:15]) parquet_num = int(file_stem[16:21]) # 13 20 00000 data_index = ((dataset_year % 100) * 100 + dataset_num) * 100000 + parquet_num for data in read_tuples_from_file(f, line_format, lines_to_buffer=lines_to_buffer): sigdata = data if index_file else data[:-1] assert sigdata[0] >= min_hash and ( ensure_order is False or last is None or sigdata >= last ), f"Hash order error. {f.tell()=}, {min_hash=}, {sigdata=}, {last=}" if sigdata[0] >= max_hash: break last = sigdata yield ( HashSig(sig=sigdata, doc_id=-1, data_index=data_index, reader_id=reader_id) if index_file else HashSig(sig=sigdata, doc_id=data[-1], data_index=data_index, reader_id=reader_id) ) class CustomMinhashDedupSignature(PipelineStep): """Minhash Deduplication: First Pipeline Step Compute the minhash signature for each document and write it to disk. Args: output_folder: output folder config: minhash configuration (a MinhashConfig object) """ type = "🫂 - DEDUP" name = "🎯 MinHash stage 1" def __init__(self, output_folder: DataFolderLike, config: CustomMinhashConfig = None, naming_prefix: str = ''): super().__init__() self.output_folder = get_datafolder(output_folder) self.config = config or CustomMinhashConfig() self.num_hashes = self.config.num_hashs self.naming_prefix = naming_prefix self._parameters = None self._hash_func = create_hash_func(self.config.hash_config) @property def parameters(self): """Minhash parameters Create parameters for a random bijective permutation function that maps a 32/64-bit hash value to another 32/64-bit hash value. http://en.wikipedia.org/wiki/Universal_hashing Note: For 64-bit hashes the upper-bound for codomain is not [0,2**64) but [0,2**61 - 1) """ if self._parameters is None: gen = np.random.RandomState(self.config.seed) self._parameters = np.array( [ ( gen.randint(1, _mersenne_prime, dtype=np.uint64), gen.randint(0, _mersenne_prime, dtype=np.uint64), ) for _ in range(self.num_hashes) ], dtype=np.uint64, ).T return self._parameters def get_signature(self, shingles: np.ndarray) -> list[list[int]]: """Get the signature for a set of shingles (n-grams) Args: shingles: shingles (n-grams) numpy uint64 array of size (N, 1) Returns: list (num buckets) of lists of integers (hashes) """ a, b = self.parameters phv = (shingles * a + b) % _mersenne_prime if self.config.hash_config.precision == 32: phv = np.bitwise_and(phv, self.config.hash_config.max) return [ x.tolist() for x in np.split(np.min(phv, axis=0)[:self.config.num_buckets * self.config.n_grams], self.config.num_buckets) ] def get_shingles(self, text: str) -> np.ndarray: """Get shingles (hashed n-grams) from a string of text Shingles are created by hashing n-grams of simplified text (lower cases, whitespace normalized, no punctuation, etc). Args: text: input text Returns: numpy array of shingles: dtype = uint64, shape = (number of n_grams in string, 1) """ return np.fromiter( [ self._hash_func("".join(x)) for x in ngrams(text, self.config.n_grams) ], dtype=np.uint64, ).reshape((-1, 1)) # def write_buckets(self, batch_id, rank, band_hash_value_list): # try: # for bucket in range(self.config.num_buckets): # with self.output_folder.open(f"{bucket:02d}/{batch_id:05d}_{rank:05d}.minhash.pkl", mode="wb") as fout: # pickle.dump(band_hash_value_list[bucket], fout) # except Exception as e: # logger.error(f"dump minhash fail, error: {e}") def run(self, data: DocumentsPipeline, rank: int = 0, world_size: int = 1) -> DocumentsPipeline: buckets = [ self.output_folder.open(f"bucket_{bi:03d}/{self.naming_prefix}_{rank:05d}.minhash.sig", mode="wb") for bi in range(self.config.num_buckets) ] with self.track_time(): # batch_id = 0 for doc_idx, doc in enumerate(data): self.stat_update(StatHints.total) shingles = self.get_shingles(doc.text) if shingles.size != 0: sig = self.get_signature(shingles) for bi, (bucket, bucket_sig) in enumerate(zip(buckets, sig)): # print(f"{self.n_grams=} {bucket_sig=}") bucket.write( struct.pack( f"<{self.config.n_grams}{self.config.hash_config.struct_format}I", *bucket_sig, doc_idx, ) ) for file in buckets: file.close() logger.info("Sorting buckets...") for bi in range(len(buckets)): # read one by one, sort and write back sigs = sorted( read_sigs( self.output_folder.open(f"bucket_{bi:03d}/{self.naming_prefix}_{rank:05d}.minhash.sig", mode="rb"), self.config, ensure_order=False, lines_to_buffer=-1, # load everything in one go ) ) with self.output_folder.open(f"bucket_{bi:03d}/{self.naming_prefix}_{rank:05d}.minhash.sig", mode="wb") as fo: for sig in sigs: fo.write( struct.pack( f"<{self.config.n_grams}{self.config.hash_config.struct_format}I", *sig.sig, sig.doc_id, ) ) class CustomMinhashDedupBuckets(PipelineStep): """Minhash Deduplication: Second Pipeline Step Find duplicate pairs from the signatures and possibly an index. Can also save an index with the new signatures. Args: input_folder: input folder containing the signature from step 1 output_folder: output folder where results (document duplicate pairs) will be saved index_folder: index folder. If set, we will load all index files in this folder and use them as a reference for deduplicating the current dataset (remove any matches on our dataset with signatures from the index) config: minhash configuration (a MinhashConfig object) only_dedup_in_index: only deduplicate versus index (ignore any matches between 2 documents in our input dataset) create_index_name: create index name. If this parameter is set, index files will be created with this name that other datasets can use as a reference for dedup. Set to `None` to disable index file creation. """ type = "🫂 - DEDUP" name = "🎯 MinHash stage 2" def __init__( self, input_folder: DataFolderLike, output_folder: DataFolderLike, config: CustomMinhashConfig = None, lines_to_buffer: int = 5, ): super().__init__() self.input_folder = get_datafolder(input_folder) self.output_folder = get_datafolder(output_folder) self.config = config or CustomMinhashConfig() self.lines_to_buffer = lines_to_buffer def get_worker_hash_range(self, sig_files, rank, world_size): workers_per_bucket = world_size // self.config.num_buckets bucket, bucket_worker = divmod(rank, workers_per_bucket) hash_min, hash_max = ( 0, _mersenne_prime if self.config.hash_config.precision == 64 else self.config.hash_config.max, ) if workers_per_bucket > 1 and len(sig_files): # take the first file and find bucket_worker boundaries. all workers in a bucket process the same set of # files, so this should be consistent across workers (and span the entire range of hashes) with self.input_folder.open(sig_files[0], mode="rb") as f: line_size = struct.calcsize(f"{self.config.n_grams}{self.config.hash_config.struct_format}I") L, rem = divmod(f.size, line_size) assert rem == 0, "file size not divisible by line size" assert L >= workers_per_bucket, f"tried to use {workers_per_bucket=} but there are only {L} lines" if bucket_worker > 0: # not first f.seek(line_size * (L // workers_per_bucket) * bucket_worker, os.SEEK_SET) hash_min = struct.unpack( self.config.hash_config.struct_format, f.read(struct.calcsize(self.config.hash_config.struct_format)), )[0] if bucket_worker + 1 < workers_per_bucket: # not last f.seek(line_size * (L // workers_per_bucket) * (bucket_worker + 1), os.SEEK_SET) hash_max = struct.unpack( self.config.hash_config.struct_format, f.read(struct.calcsize(self.config.hash_config.struct_format)), )[0] return hash_min, hash_max def run(self, data: DocumentsPipeline = None, rank: int = 0, world_size: int = 1): assert data is None, "You should not use an input block before MinhashDedupBuckets" assert (world_size % self.config.num_buckets) == 0, "Number of tasks must be divisible by num_buckets" workers_per_bucket = world_size // self.config.num_buckets bucket, bucket_worker = divmod(rank, workers_per_bucket) with self.track_time(): sig_files = self.input_folder.list_files(subdirectory=f"bucket_{bucket:03d}") hash_min, hash_max = self.get_worker_hash_range(sig_files, rank, world_size) logger.info( f"Running worker {bucket_worker + 1}/{workers_per_bucket} on bucket {bucket:03d}. " f"Hash range: {[hash_min, hash_max]}" ) sig_readers = [ read_sigs( file, self.config, min_hash=hash_min, max_hash=hash_max, lines_to_buffer=self.lines_to_buffer, reader_id=file_i, ) for file_i, file in enumerate(self.input_folder.open_files(sig_files, mode="rb")) ] pq = [x for x in [next(sig_reader, None) for sig_reader in sig_readers] if x is not None] heapq.heapify(pq) logger.info("Finished initializing signatures priority queue.") with self.output_folder.open(f"{bucket:05d}_{bucket_worker:02d}.dups", mode="wb") as out_f: last: HashSig | None = None while pq: v: HashSig = heapq.heappop(pq) assert last is None or v >= last, f"Sig queue sort error. {v=} < {last=}" if last and last.sig == v.sig: # write (file_id1, doc_id1, file_id2, doc_id2) out_f.write( struct.pack("<4I", last.data_index, last.doc_id, v.data_index, v.doc_id) ) self.stat_update("total_matches") last = v next_sig = next(sig_readers[v.reader_id], None) if next_sig: assert next_sig >= v, f"Next sig sort error. {next_sig=} < {v=}" heapq.heappush(pq, next_sig) class CustomMinhashDedupCluster(PipelineStep): """Minhash Deduplication: Third Pipeline Step Cluster the documents using the previously found duplicate pairs. If A-B and B-C are duplicate pairs, then we will have the A-B-C cluster. Only one document per cluster will be kept after filtering """ type = "🫂 - DEDUP" name = "🎯 MinHash stage 3" def __init__( self, input_folder: DataFolderLike, output_folder: DataFolderLike, config: CustomMinhashConfig = None, ignore_index_matches: bool = False, lines_to_buffer: int = 5, ): super().__init__() self.input_folder = get_datafolder(input_folder) self.output_folder = get_datafolder(output_folder) self.config = config or CustomMinhashConfig() self.ignore_index_matches = ignore_index_matches self.lines_to_buffer = lines_to_buffer def run(self, data: DocumentsPipeline = None, _: int = 0, world_size: int = 1): global datasets global dataset_map dup_files = self.input_folder.list_files(glob_pattern="*.dups") assert ( len(dup_files) % self.config.num_buckets ) == 0, "Number of .dups files should be divisible by number of buckets" assert world_size == 1, "World size must be 1 for clustering" union_set = np.arange(0, 1_500_000 * 10_000, dtype=np.uint64) exists = np.zeros(1_500_000 * 10_000, dtype=bool) max_no = 0 def parent(x): exists[x] = 1 if union_set[x] == x: return x # Path Compression union_set[x] = parent(union_set[x]) return union_set[x] with self.track_time(): for dup_file in dup_files: with self.input_folder.open(dup_file, "rb") as dupf: logger.info(f"Processing {dup_file}") for f1, d1, f2, d2 in read_tuples_from_file(dupf, "4I", lines_to_buffer=self.lines_to_buffer): a, b = transform(f1, d1), transform(f2, d2) if a > max_no: max_no = a if b > max_no: max_no = b union_set[parent(b)] = parent(a) logger.info("Outputing") with self.output_folder.get_output_file_manager(mode="wb") as output_mg: for node in range(max_no + 1): if exists[node]: self.stat_update("duplicates") p = parent(node) if node != p: dataset_idx = datasets[node % 10000] dataset_year = dataset_idx // 10000000 dataset_num = (dataset_idx // 100000) % 100 parquet_num = dataset_idx % 100000 output_mg.write(f"CC-MAIN-20{dataset_year:02d}-{dataset_num:02d}_{parquet_num:05d}.remove", struct.pack(" 0: # self.write_bands(rank, batch_id, band_hash_value_list)