File size: 5,834 Bytes
f1bf1b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "\n",
    "df = pd.read_csv('../data/task2.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "\n",
    "draft_ids = list(df['Original_id'])\n",
    "\n",
    "# input data\n",
    "countries = list(df['Country'])\n",
    "drafts = []\n",
    "votes = list(df['Voting'])\n",
    "\n",
    "path = '../data/task2'\n",
    "for i in draft_ids:\n",
    "    folder_path = os.path.join(path, str(i))\n",
    "    files = os.listdir(folder_path)\n",
    "    json_file = [file for file in files if file.endswith('EN.json')][0]\n",
    "    with open(os.path.join(folder_path, json_file)) as f:\n",
    "        draft = json.load(f)\n",
    "    drafts.append(draft['Content'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# If use Together API\n",
    "from together import Together\n",
    "\n",
    "your_model_name = 'xxxxxxxxxxxxxxxxxxxxxxxx' \n",
    "your_api_key = 'xxxxxxxxxxxxxxxxxxxxxxxx'\n",
    "client = Together(api_key=your_api_key)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import random\n",
    "from tqdm import tqdm\n",
    "\n",
    "pred = []\n",
    "invalid_responses = []\n",
    "for i, (draft, country) in tqdm(enumerate(zip(drafts, countries))):\n",
    "    system_prompt = \"You are an experienced diplomat participating in United Nations Security Council sessions. Your task is to read draft resolutions and vote accordingly. You must strictly respond with 'Y', 'N', or 'A' without any additional explanation.\"\n",
    "    user_prompt = f\"\"\"The following is a United Nations Security Council draft resolution. Assume you are a diplomat from {country} and must cast your vote.\n",
    "\n",
    "    Please read the draft and vote using one of the following options:\n",
    "    - 'Y' for Yes (in favor)\n",
    "    - 'N' for No (against)\n",
    "    - 'A' for Abstain\n",
    "\n",
    "    Draft Resolution: {draft}\n",
    "    Answer:\n",
    "    \"\"\"\n",
    "    response = client.chat.completions.create(\n",
    "        model=your_model_name,\n",
    "        messages=[\n",
    "            {\"role\": \"system\", \"content\": system_prompt},\n",
    "            {\"role\": \"user\", \"content\": user_prompt}\n",
    "        ],\n",
    "        max_tokens=1, \n",
    "        temperature=0.0\n",
    "    )\n",
    "    result = response.choices[0].message.content.strip()\n",
    "    valid_votes = ['Y', 'N', 'A']\n",
    "    if result not in valid_votes:\n",
    "        print(f\"Invalid response: {result}\")\n",
    "        result = random.choice(valid_votes)\n",
    "        invalid_responses.append(i)\n",
    "    pred.append(result)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# calculate metrics\n",
    "from sklearn.metrics import accuracy_score, balanced_accuracy_score, precision_recall_fscore_support\n",
    "from sklearn.metrics import roc_auc_score, average_precision_score, matthews_corrcoef\n",
    "from sklearn.preprocessing import LabelEncoder, label_binarize\n",
    "from imblearn.metrics import geometric_mean_score\n",
    "import numpy as np\n",
    "\n",
    "def calculate_metrics(pred, labels):\n",
    "    label_encoder = LabelEncoder()\n",
    "    all_classes = list(set(labels) | set(pred))  \n",
    "    label_encoder.fit(all_classes)\n",
    "\n",
    "    labels = label_encoder.transform(labels) \n",
    "    pred = label_encoder.transform(pred)  \n",
    "\n",
    "    acc = accuracy_score(labels, pred)\n",
    "    \n",
    "    num_classes = len(label_encoder.classes_)\n",
    "    true_labels_bin = label_binarize(labels, classes=list(range(num_classes)))\n",
    "    pred_bin = label_binarize(pred, classes=list(range(num_classes)))  \n",
    "\n",
    "    auc = roc_auc_score(true_labels_bin, pred_bin, multi_class='ovr', average='macro')\n",
    "    pr_auc = average_precision_score(true_labels_bin, pred_bin, average='macro')\n",
    "\n",
    "    balanced_acc = balanced_accuracy_score(labels, pred)\n",
    "    prec, rec, f1, _ = precision_recall_fscore_support(labels, pred, average='macro')\n",
    "\n",
    "    mcc = matthews_corrcoef(labels, pred)\n",
    "    g_mean = geometric_mean_score(labels, pred, average='macro')\n",
    "\n",
    "    print(f'Accuracy: {acc}')\n",
    "    print(f'AUC: {auc}')\n",
    "    print(f'Balanced Accuracy: {balanced_acc}')\n",
    "    print(f'Precision: {prec}')\n",
    "    print(f'Recall: {rec}')\n",
    "    print(f'F1: {f1}')\n",
    "    print(f'PR AUC: {pr_auc}')\n",
    "    print(f'MCC: {mcc}')\n",
    "    print(f'G-Mean: {g_mean}')\n",
    "\n",
    "    print('Accuracy AUC Balanced_Acc Precision Recall F1 PR_AUC MCC G-Mean')\n",
    "    print(f'{acc:.4f} {auc:.4f} {balanced_acc:.4f} {prec:.4f} {rec:.4f} {f1:.4f} {pr_auc:.4f} {mcc:.4f} {g_mean:.4f}')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "calculate_metrics(pred, votes)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llm",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.19"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}