File size: 5,193 Bytes
f1bf1b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "\n",
    "with open('../data/task3.json', 'r') as f:\n",
    "    data = json.load(f)\n",
    "\n",
    "test_texts = data['drafts']\n",
    "test_labels = data['labels']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# If use Together API\n",
    "from together import Together\n",
    "\n",
    "your_model_name = 'xxxxxxxxxxxxxxxxxxxxxxxx'\n",
    "your_api_key = 'xxxxxxxxxxxxxxxxxxxxxxxx'\n",
    "client = Together(api_key=your_api_key)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from tqdm import tqdm\n",
    "import pandas as pd\n",
    "import random\n",
    "\n",
    "def classify_texts(texts):\n",
    "    results = []\n",
    "    for text in tqdm(texts):\n",
    "        user_prompt = f\"\"\"\n",
    "        The provided document is a United Nations Security Council's draft resolution. Predict whether the draft resolution will be adopted or not. Answer with 'yes' (1) or 'no' (0) without any explanation.\n",
    "\n",
    "        Text: \"{text}\"\n",
    "        Answer:\n",
    "        \"\"\"\n",
    "        response = client.chat.completions.create(\n",
    "            model=your_model_name,\n",
    "            messages=[\n",
    "                {\"role\": \"system\", \"content\": \"You are a helpful assistant.\"},\n",
    "                {\"role\": \"user\", \"content\": user_prompt}\n",
    "            ],\n",
    "            max_tokens=5,\n",
    "            temperature=0.0\n",
    "        )\n",
    "        result = response.choices[0].message.content.strip().lower()\n",
    "        \n",
    "        if result.startswith(\"yes\") or result == \"1\":\n",
    "            results.append(1)\n",
    "        elif result.startswith(\"no\") or result == \"0\":\n",
    "            results.append(0)\n",
    "        else:\n",
    "            results.append(random.choice([0, 1]))  \n",
    "    return results\n",
    "\n",
    "\n",
    "pred = classify_texts(test_texts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# calculate metrics\n",
    "from sklearn.metrics import accuracy_score, balanced_accuracy_score, precision_recall_fscore_support\n",
    "from sklearn.metrics import roc_auc_score, average_precision_score, matthews_corrcoef\n",
    "from imblearn.metrics import geometric_mean_score\n",
    "\n",
    "from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report\n",
    "from sklearn.metrics import roc_auc_score, balanced_accuracy_score, precision_recall_curve, auc\n",
    "\n",
    "def calculate_metrics(pred, labels):\n",
    "    # swap 0 and 1\n",
    "    pred = [1 - x for x in pred]\n",
    "    labels = [1 - x for x in labels]\n",
    "    acc = accuracy_score(labels, pred)\n",
    "    try:\n",
    "        roc_auc = roc_auc_score(labels, pred)\n",
    "    except ValueError:\n",
    "        roc_auc = 0\n",
    "    balanced_acc = balanced_accuracy_score(labels, pred)\n",
    "    prec, rec, f1, _ = precision_recall_fscore_support(labels, pred, average='binary')\n",
    "    # pr_auc = average_precision_score(labels, pred)\n",
    "    precision, recall, _ = precision_recall_curve(labels, pred)\n",
    "    pr_auc = auc(recall, precision)\n",
    "    mcc = matthews_corrcoef(labels, pred)\n",
    "    g_mean = geometric_mean_score(labels, pred)\n",
    "    tn, fp, fn, tp = confusion_matrix(labels, pred).ravel()\n",
    "    specificity = tn / (tn + fp)\n",
    "\n",
    "    print(f'Accuracy: {acc}')\n",
    "    print(f'AUC: {roc_auc}')\n",
    "    print(f'Balanced Accuracy: {balanced_acc}')\n",
    "    print(f'Precision: {prec}')\n",
    "    print(f'Recall: {rec}')\n",
    "    print(f'F1: {f1}')\n",
    "    print(f'PR AUC: {pr_auc}')\n",
    "    print(f'MCC: {mcc}')\n",
    "    print(f'G-Mean: {g_mean}')\n",
    "    print(f'Specificity: {specificity}')\n",
    "\n",
    "    print('Accuracy AUC Balanced_Acc Precision Recall F1 PR_AUC MCC G-Mean Specificity')\n",
    "    print(f'{acc:.4f} {roc_auc:.4f} {balanced_acc:.4f} {prec:.4f} {rec:.4f} {f1:.4f} {pr_auc:.4f} {mcc:.4f} {g_mean:.4f} {specificity:.4f}')\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "calculate_metrics(pred, test_labels)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "llm",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.19"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}