{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import json\n", "\n", "with open('../data/task4.json') as f:\n", " data = json.load(f)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# If use Together API\n", "from together import Together\n", "\n", "your_model_name = 'xxxxxxxxxxxxxxxxxxxxxxxx'\n", "your_api_key = 'xxxxxxxxxxxxxxxxxxxxxxxx'\n", "client = Together(api_key=your_api_key)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "for draft in data:\n", " statements = draft['Statements']\n", " for statement in statements:\n", " country = statement['country']\n", " system_prompt = f\"\"\"\n", " Assume you are the representative of {country} in UNSC, given the content of a UNSC draft resolution, generate a statement that you would make in the meeting.\n", " \"\"\"\n", " user_prompt = f\"\"\"\n", " Draft resolution: {draft['Content']}\n", " Your statement:\n", " \"\"\"\n", " response = client.chat.completions.create(\n", " model=your_model_name,\n", " temperature=0.0,\n", " messages=[\n", " {\"role\": \"system\", \"content\": system_prompt},\n", " {\"role\": \"user\", \"content\": user_prompt}\n", " ]\n", " )\n", " statement['generation'] = response.choices[0].message.content\n", " draft['Statements'] = statements" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "statements = []\n", "generations = []\n", "\n", "for draft in data:\n", " for statement in draft['Statements']:\n", " statements.append(statement['statement'])\n", " generations.append(statement['generation'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# average ROUGE\n", "from rouge_score import rouge_scorer\n", "scorer = rouge_scorer.RougeScorer(['rougeL'], use_stemmer=True)\n", "\n", "rouge_scores = []\n", "for i in range(len(statements)):\n", " scores = scorer.score(statements[i], generations[i])\n", " rouge_scores.append(scores['rougeL'].fmeasure)\n", "\n", "print('Average ROUGE-L:', sum(rouge_scores) / len(rouge_scores))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# average Jaccard similarity\n", "from sklearn.feature_extraction.text import CountVectorizer\n", "from sklearn.metrics import jaccard_score\n", "\n", "jaccard_scores = []\n", "vectorizer = CountVectorizer(binary=True)\n", "\n", "for i in range(len(statements)):\n", " X = vectorizer.fit_transform([statements[i], generations[i]]).toarray()\n", " jaccard_scores.append(jaccard_score(X[0], X[1]))\n", "\n", "print('Average Jaccard similarity:', sum(jaccard_scores) / len(jaccard_scores))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# average Cosing Similarity (TF-IDF)\n", "from sklearn.feature_extraction.text import TfidfVectorizer\n", "from sklearn.metrics.pairwise import cosine_similarity\n", "\n", "tf_cosine_scores = []\n", "for i in range(len(statements)):\n", " tfidf = TfidfVectorizer().fit_transform([statements[i], generations[i]])\n", " tf_cosine_scores.append(cosine_similarity(tfidf[0], tfidf[1])[0][0])\n", "\n", "print('Average Cosine Similarity (TF-IDF):', sum(tf_cosine_scores) / len(tf_cosine_scores))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from sentence_transformers import SentenceTransformer, util\n", "\n", "device = 'cuda:1'\n", "model = SentenceTransformer('stsb-roberta-large', device=device)\n", "cosine_scores = []\n", "for i in range(len(statements)):\n", " embeddings = model.encode([statements[i], generations[i]])\n", " cosine_scores.append(util.pytorch_cos_sim(embeddings[0], embeddings[1]).item())\n", "\n", "print('Average Cosine Similarity (BERT):', sum(cosine_scores) / len(cosine_scores))\n" ] } ], "metadata": { "kernelspec": { "display_name": "llm", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.19" } }, "nbformat": 4, "nbformat_minor": 2 }