--- annotations_creators: - expert-generated language: - en license: mit task_categories: - text-classification - multiple-choice - text-generation size_categories: - 1K cd github_data ``` 2. **Set up a virtual environment and install dependencies:** ```bash python -m venv venv source venv/bin/activate # On Windows use `venv\Scripts\activate` pip install -r requirements.txt ``` 3. **Add Together API credentials:** Replace placeholders in notebooks: ```python your_model_name = 'xxxxxxxxxxxxxxxxxxxxxxxx' your_api_key = 'xxxxxxxxxxxxxxxxxxxxxxxx' ``` with your Together API details or you can use your own LLMs. ## Usage 1. **Launch Jupyter Notebooks:** ```bash jupyter notebook ``` 2. **Run the desired task notebooks:** - `run_task1.ipynb` — Coauthor selection. - `run_task2.ipynb` — Voting simulation. - `run_task3.ipynb` — Adoption prediction. - `run_task4.ipynb` — Statement generation. 3. **Evaluate model outputs:** - Tasks 2 & 3 include performance metrics like Accuracy, AUC, F1 Score, and others. - Task 4 computes ROUGE-L scores for generated statements. ## Requirements - Python 3.x - Jupyter Notebook - together - pandas - numpy - scikit-learn - tqdm - imbalanced-learn - rouge-score