zhiyang1 commited on
Commit
384028e
·
verified ·
1 Parent(s): 200b05e

Upload folder using huggingface_hub

Browse files
lumina_ar-1_diffuser-6_step-600/config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ar_steps": 1,
3
+ "architectures": [
4
+ "DiffLLMDiffusion"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "img_cross_attention_dim": 2048,
12
+ "img_diffuser_depth": 6,
13
+ "img_ffn_dim_multiplier": null,
14
+ "img_hidden_size": 2304,
15
+ "img_multiple_of": 256,
16
+ "img_norm_eps": 1e-05,
17
+ "img_num_attention_heads": 32,
18
+ "img_num_kv_heads": 8,
19
+ "img_qk_norm": true,
20
+ "in_channels": 4,
21
+ "initializer_range": 0.02,
22
+ "inject_img_diffuser": true,
23
+ "input_size": 32,
24
+ "intermediate_size": 8960,
25
+ "max_position_embeddings": 32768,
26
+ "max_window_layers": 28,
27
+ "model_type": "qwen2",
28
+ "non_linearity": 1,
29
+ "norm_elementwise_affine": true,
30
+ "num_attention_heads": 12,
31
+ "num_hidden_layers": 28,
32
+ "num_key_value_heads": 2,
33
+ "patch_size": 2,
34
+ "rms_norm_eps": 1e-06,
35
+ "rope_scaling": null,
36
+ "rope_theta": 1000000.0,
37
+ "sample_size": 128,
38
+ "sampling_steps": 28,
39
+ "sliding_window": null,
40
+ "tie_word_embeddings": true,
41
+ "torch_dtype": "bfloat16",
42
+ "transformers_version": "4.47.0",
43
+ "use_cache": true,
44
+ "use_sliding_window": false,
45
+ "vae_path": "stabilityai/sdxl-vae",
46
+ "vocab_size": 151936
47
+ }
lumina_ar-1_diffuser-6_step-600/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99c709e22a9cc3ab77a91194ce23c20e35bf17102f009b6f482b7e162f1a15d8
3
+ size 4713645232
lumina_ar-1_diffuser-6_step-600/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f171d55a943427525a20731896dcee1d6f3b1e7b1507b14901967ddeda880cba
3
+ size 634084454
lumina_ar-1_diffuser-6_step-600/model.safetensors.index.json ADDED
@@ -0,0 +1,1160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5347601966
4
+ },
5
+ "weight_map": {
6
+ "embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "img2text.bias": "model-00001-of-00002.safetensors",
8
+ "img2text.weight": "model-00001-of-00002.safetensors",
9
+ "img_diffuser.caption_embedder.0.bias": "model-00001-of-00002.safetensors",
10
+ "img_diffuser.caption_embedder.0.weight": "model-00001-of-00002.safetensors",
11
+ "img_diffuser.caption_embedder.1.bias": "model-00001-of-00002.safetensors",
12
+ "img_diffuser.caption_embedder.1.weight": "model-00001-of-00002.safetensors",
13
+ "img_diffuser.layers.0.attn1.norm_k.bias": "model-00001-of-00002.safetensors",
14
+ "img_diffuser.layers.0.attn1.norm_k.weight": "model-00001-of-00002.safetensors",
15
+ "img_diffuser.layers.0.attn1.norm_q.bias": "model-00001-of-00002.safetensors",
16
+ "img_diffuser.layers.0.attn1.norm_q.weight": "model-00001-of-00002.safetensors",
17
+ "img_diffuser.layers.0.attn1.to_k.weight": "model-00001-of-00002.safetensors",
18
+ "img_diffuser.layers.0.attn1.to_q.weight": "model-00001-of-00002.safetensors",
19
+ "img_diffuser.layers.0.attn1.to_v.weight": "model-00001-of-00002.safetensors",
20
+ "img_diffuser.layers.0.attn2.norm_k.bias": "model-00001-of-00002.safetensors",
21
+ "img_diffuser.layers.0.attn2.norm_k.weight": "model-00001-of-00002.safetensors",
22
+ "img_diffuser.layers.0.attn2.norm_q.bias": "model-00001-of-00002.safetensors",
23
+ "img_diffuser.layers.0.attn2.norm_q.weight": "model-00001-of-00002.safetensors",
24
+ "img_diffuser.layers.0.attn2.to_k.weight": "model-00001-of-00002.safetensors",
25
+ "img_diffuser.layers.0.attn2.to_out.0.weight": "model-00001-of-00002.safetensors",
26
+ "img_diffuser.layers.0.attn2.to_q.weight": "model-00001-of-00002.safetensors",
27
+ "img_diffuser.layers.0.attn2.to_v.weight": "model-00001-of-00002.safetensors",
28
+ "img_diffuser.layers.0.feed_forward.linear_1.weight": "model-00001-of-00002.safetensors",
29
+ "img_diffuser.layers.0.feed_forward.linear_2.weight": "model-00001-of-00002.safetensors",
30
+ "img_diffuser.layers.0.feed_forward.linear_3.weight": "model-00001-of-00002.safetensors",
31
+ "img_diffuser.layers.0.ffn_norm1.weight": "model-00001-of-00002.safetensors",
32
+ "img_diffuser.layers.0.ffn_norm2.weight": "model-00001-of-00002.safetensors",
33
+ "img_diffuser.layers.0.gate": "model-00001-of-00002.safetensors",
34
+ "img_diffuser.layers.0.norm1.linear.bias": "model-00001-of-00002.safetensors",
35
+ "img_diffuser.layers.0.norm1.linear.weight": "model-00001-of-00002.safetensors",
36
+ "img_diffuser.layers.0.norm1.norm.weight": "model-00001-of-00002.safetensors",
37
+ "img_diffuser.layers.0.norm1_context.weight": "model-00001-of-00002.safetensors",
38
+ "img_diffuser.layers.0.norm2.weight": "model-00001-of-00002.safetensors",
39
+ "img_diffuser.layers.1.attn1.norm_k.bias": "model-00001-of-00002.safetensors",
40
+ "img_diffuser.layers.1.attn1.norm_k.weight": "model-00001-of-00002.safetensors",
41
+ "img_diffuser.layers.1.attn1.norm_q.bias": "model-00001-of-00002.safetensors",
42
+ "img_diffuser.layers.1.attn1.norm_q.weight": "model-00001-of-00002.safetensors",
43
+ "img_diffuser.layers.1.attn1.to_k.weight": "model-00001-of-00002.safetensors",
44
+ "img_diffuser.layers.1.attn1.to_q.weight": "model-00001-of-00002.safetensors",
45
+ "img_diffuser.layers.1.attn1.to_v.weight": "model-00001-of-00002.safetensors",
46
+ "img_diffuser.layers.1.attn2.norm_k.bias": "model-00001-of-00002.safetensors",
47
+ "img_diffuser.layers.1.attn2.norm_k.weight": "model-00001-of-00002.safetensors",
48
+ "img_diffuser.layers.1.attn2.norm_q.bias": "model-00001-of-00002.safetensors",
49
+ "img_diffuser.layers.1.attn2.norm_q.weight": "model-00001-of-00002.safetensors",
50
+ "img_diffuser.layers.1.attn2.to_k.weight": "model-00001-of-00002.safetensors",
51
+ "img_diffuser.layers.1.attn2.to_out.0.weight": "model-00001-of-00002.safetensors",
52
+ "img_diffuser.layers.1.attn2.to_q.weight": "model-00001-of-00002.safetensors",
53
+ "img_diffuser.layers.1.attn2.to_v.weight": "model-00001-of-00002.safetensors",
54
+ "img_diffuser.layers.1.feed_forward.linear_1.weight": "model-00001-of-00002.safetensors",
55
+ "img_diffuser.layers.1.feed_forward.linear_2.weight": "model-00001-of-00002.safetensors",
56
+ "img_diffuser.layers.1.feed_forward.linear_3.weight": "model-00001-of-00002.safetensors",
57
+ "img_diffuser.layers.1.ffn_norm1.weight": "model-00001-of-00002.safetensors",
58
+ "img_diffuser.layers.1.ffn_norm2.weight": "model-00001-of-00002.safetensors",
59
+ "img_diffuser.layers.1.gate": "model-00001-of-00002.safetensors",
60
+ "img_diffuser.layers.1.norm1.linear.bias": "model-00001-of-00002.safetensors",
61
+ "img_diffuser.layers.1.norm1.linear.weight": "model-00001-of-00002.safetensors",
62
+ "img_diffuser.layers.1.norm1.norm.weight": "model-00001-of-00002.safetensors",
63
+ "img_diffuser.layers.1.norm1_context.weight": "model-00001-of-00002.safetensors",
64
+ "img_diffuser.layers.1.norm2.weight": "model-00001-of-00002.safetensors",
65
+ "img_diffuser.layers.2.attn1.norm_k.bias": "model-00001-of-00002.safetensors",
66
+ "img_diffuser.layers.2.attn1.norm_k.weight": "model-00001-of-00002.safetensors",
67
+ "img_diffuser.layers.2.attn1.norm_q.bias": "model-00001-of-00002.safetensors",
68
+ "img_diffuser.layers.2.attn1.norm_q.weight": "model-00001-of-00002.safetensors",
69
+ "img_diffuser.layers.2.attn1.to_k.weight": "model-00001-of-00002.safetensors",
70
+ "img_diffuser.layers.2.attn1.to_q.weight": "model-00001-of-00002.safetensors",
71
+ "img_diffuser.layers.2.attn1.to_v.weight": "model-00001-of-00002.safetensors",
72
+ "img_diffuser.layers.2.attn2.norm_k.bias": "model-00001-of-00002.safetensors",
73
+ "img_diffuser.layers.2.attn2.norm_k.weight": "model-00001-of-00002.safetensors",
74
+ "img_diffuser.layers.2.attn2.norm_q.bias": "model-00001-of-00002.safetensors",
75
+ "img_diffuser.layers.2.attn2.norm_q.weight": "model-00001-of-00002.safetensors",
76
+ "img_diffuser.layers.2.attn2.to_k.weight": "model-00001-of-00002.safetensors",
77
+ "img_diffuser.layers.2.attn2.to_out.0.weight": "model-00001-of-00002.safetensors",
78
+ "img_diffuser.layers.2.attn2.to_q.weight": "model-00001-of-00002.safetensors",
79
+ "img_diffuser.layers.2.attn2.to_v.weight": "model-00001-of-00002.safetensors",
80
+ "img_diffuser.layers.2.feed_forward.linear_1.weight": "model-00001-of-00002.safetensors",
81
+ "img_diffuser.layers.2.feed_forward.linear_2.weight": "model-00001-of-00002.safetensors",
82
+ "img_diffuser.layers.2.feed_forward.linear_3.weight": "model-00001-of-00002.safetensors",
83
+ "img_diffuser.layers.2.ffn_norm1.weight": "model-00001-of-00002.safetensors",
84
+ "img_diffuser.layers.2.ffn_norm2.weight": "model-00001-of-00002.safetensors",
85
+ "img_diffuser.layers.2.gate": "model-00001-of-00002.safetensors",
86
+ "img_diffuser.layers.2.norm1.linear.bias": "model-00001-of-00002.safetensors",
87
+ "img_diffuser.layers.2.norm1.linear.weight": "model-00001-of-00002.safetensors",
88
+ "img_diffuser.layers.2.norm1.norm.weight": "model-00001-of-00002.safetensors",
89
+ "img_diffuser.layers.2.norm1_context.weight": "model-00001-of-00002.safetensors",
90
+ "img_diffuser.layers.2.norm2.weight": "model-00001-of-00002.safetensors",
91
+ "img_diffuser.layers.3.attn1.norm_k.bias": "model-00001-of-00002.safetensors",
92
+ "img_diffuser.layers.3.attn1.norm_k.weight": "model-00001-of-00002.safetensors",
93
+ "img_diffuser.layers.3.attn1.norm_q.bias": "model-00001-of-00002.safetensors",
94
+ "img_diffuser.layers.3.attn1.norm_q.weight": "model-00001-of-00002.safetensors",
95
+ "img_diffuser.layers.3.attn1.to_k.weight": "model-00001-of-00002.safetensors",
96
+ "img_diffuser.layers.3.attn1.to_q.weight": "model-00001-of-00002.safetensors",
97
+ "img_diffuser.layers.3.attn1.to_v.weight": "model-00001-of-00002.safetensors",
98
+ "img_diffuser.layers.3.attn2.norm_k.bias": "model-00001-of-00002.safetensors",
99
+ "img_diffuser.layers.3.attn2.norm_k.weight": "model-00001-of-00002.safetensors",
100
+ "img_diffuser.layers.3.attn2.norm_q.bias": "model-00001-of-00002.safetensors",
101
+ "img_diffuser.layers.3.attn2.norm_q.weight": "model-00001-of-00002.safetensors",
102
+ "img_diffuser.layers.3.attn2.to_k.weight": "model-00001-of-00002.safetensors",
103
+ "img_diffuser.layers.3.attn2.to_out.0.weight": "model-00001-of-00002.safetensors",
104
+ "img_diffuser.layers.3.attn2.to_q.weight": "model-00001-of-00002.safetensors",
105
+ "img_diffuser.layers.3.attn2.to_v.weight": "model-00001-of-00002.safetensors",
106
+ "img_diffuser.layers.3.feed_forward.linear_1.weight": "model-00001-of-00002.safetensors",
107
+ "img_diffuser.layers.3.feed_forward.linear_2.weight": "model-00001-of-00002.safetensors",
108
+ "img_diffuser.layers.3.feed_forward.linear_3.weight": "model-00001-of-00002.safetensors",
109
+ "img_diffuser.layers.3.ffn_norm1.weight": "model-00001-of-00002.safetensors",
110
+ "img_diffuser.layers.3.ffn_norm2.weight": "model-00001-of-00002.safetensors",
111
+ "img_diffuser.layers.3.gate": "model-00001-of-00002.safetensors",
112
+ "img_diffuser.layers.3.norm1.linear.bias": "model-00001-of-00002.safetensors",
113
+ "img_diffuser.layers.3.norm1.linear.weight": "model-00001-of-00002.safetensors",
114
+ "img_diffuser.layers.3.norm1.norm.weight": "model-00001-of-00002.safetensors",
115
+ "img_diffuser.layers.3.norm1_context.weight": "model-00001-of-00002.safetensors",
116
+ "img_diffuser.layers.3.norm2.weight": "model-00001-of-00002.safetensors",
117
+ "img_diffuser.layers.4.attn1.norm_k.bias": "model-00001-of-00002.safetensors",
118
+ "img_diffuser.layers.4.attn1.norm_k.weight": "model-00001-of-00002.safetensors",
119
+ "img_diffuser.layers.4.attn1.norm_q.bias": "model-00001-of-00002.safetensors",
120
+ "img_diffuser.layers.4.attn1.norm_q.weight": "model-00001-of-00002.safetensors",
121
+ "img_diffuser.layers.4.attn1.to_k.weight": "model-00001-of-00002.safetensors",
122
+ "img_diffuser.layers.4.attn1.to_q.weight": "model-00001-of-00002.safetensors",
123
+ "img_diffuser.layers.4.attn1.to_v.weight": "model-00001-of-00002.safetensors",
124
+ "img_diffuser.layers.4.attn2.norm_k.bias": "model-00001-of-00002.safetensors",
125
+ "img_diffuser.layers.4.attn2.norm_k.weight": "model-00001-of-00002.safetensors",
126
+ "img_diffuser.layers.4.attn2.norm_q.bias": "model-00001-of-00002.safetensors",
127
+ "img_diffuser.layers.4.attn2.norm_q.weight": "model-00001-of-00002.safetensors",
128
+ "img_diffuser.layers.4.attn2.to_k.weight": "model-00001-of-00002.safetensors",
129
+ "img_diffuser.layers.4.attn2.to_out.0.weight": "model-00001-of-00002.safetensors",
130
+ "img_diffuser.layers.4.attn2.to_q.weight": "model-00001-of-00002.safetensors",
131
+ "img_diffuser.layers.4.attn2.to_v.weight": "model-00001-of-00002.safetensors",
132
+ "img_diffuser.layers.4.feed_forward.linear_1.weight": "model-00001-of-00002.safetensors",
133
+ "img_diffuser.layers.4.feed_forward.linear_2.weight": "model-00001-of-00002.safetensors",
134
+ "img_diffuser.layers.4.feed_forward.linear_3.weight": "model-00001-of-00002.safetensors",
135
+ "img_diffuser.layers.4.ffn_norm1.weight": "model-00001-of-00002.safetensors",
136
+ "img_diffuser.layers.4.ffn_norm2.weight": "model-00001-of-00002.safetensors",
137
+ "img_diffuser.layers.4.gate": "model-00001-of-00002.safetensors",
138
+ "img_diffuser.layers.4.norm1.linear.bias": "model-00001-of-00002.safetensors",
139
+ "img_diffuser.layers.4.norm1.linear.weight": "model-00001-of-00002.safetensors",
140
+ "img_diffuser.layers.4.norm1.norm.weight": "model-00001-of-00002.safetensors",
141
+ "img_diffuser.layers.4.norm1_context.weight": "model-00001-of-00002.safetensors",
142
+ "img_diffuser.layers.4.norm2.weight": "model-00001-of-00002.safetensors",
143
+ "img_diffuser.layers.5.attn1.norm_k.bias": "model-00001-of-00002.safetensors",
144
+ "img_diffuser.layers.5.attn1.norm_k.weight": "model-00001-of-00002.safetensors",
145
+ "img_diffuser.layers.5.attn1.norm_q.bias": "model-00001-of-00002.safetensors",
146
+ "img_diffuser.layers.5.attn1.norm_q.weight": "model-00001-of-00002.safetensors",
147
+ "img_diffuser.layers.5.attn1.to_k.weight": "model-00001-of-00002.safetensors",
148
+ "img_diffuser.layers.5.attn1.to_q.weight": "model-00001-of-00002.safetensors",
149
+ "img_diffuser.layers.5.attn1.to_v.weight": "model-00001-of-00002.safetensors",
150
+ "img_diffuser.layers.5.attn2.norm_k.bias": "model-00001-of-00002.safetensors",
151
+ "img_diffuser.layers.5.attn2.norm_k.weight": "model-00001-of-00002.safetensors",
152
+ "img_diffuser.layers.5.attn2.norm_q.bias": "model-00001-of-00002.safetensors",
153
+ "img_diffuser.layers.5.attn2.norm_q.weight": "model-00001-of-00002.safetensors",
154
+ "img_diffuser.layers.5.attn2.to_k.weight": "model-00001-of-00002.safetensors",
155
+ "img_diffuser.layers.5.attn2.to_out.0.weight": "model-00001-of-00002.safetensors",
156
+ "img_diffuser.layers.5.attn2.to_q.weight": "model-00001-of-00002.safetensors",
157
+ "img_diffuser.layers.5.attn2.to_v.weight": "model-00001-of-00002.safetensors",
158
+ "img_diffuser.layers.5.feed_forward.linear_1.weight": "model-00001-of-00002.safetensors",
159
+ "img_diffuser.layers.5.feed_forward.linear_2.weight": "model-00001-of-00002.safetensors",
160
+ "img_diffuser.layers.5.feed_forward.linear_3.weight": "model-00001-of-00002.safetensors",
161
+ "img_diffuser.layers.5.ffn_norm1.weight": "model-00001-of-00002.safetensors",
162
+ "img_diffuser.layers.5.ffn_norm2.weight": "model-00001-of-00002.safetensors",
163
+ "img_diffuser.layers.5.gate": "model-00001-of-00002.safetensors",
164
+ "img_diffuser.layers.5.norm1.linear.bias": "model-00001-of-00002.safetensors",
165
+ "img_diffuser.layers.5.norm1.linear.weight": "model-00001-of-00002.safetensors",
166
+ "img_diffuser.layers.5.norm1.norm.weight": "model-00001-of-00002.safetensors",
167
+ "img_diffuser.layers.5.norm1_context.weight": "model-00001-of-00002.safetensors",
168
+ "img_diffuser.layers.5.norm2.weight": "model-00001-of-00002.safetensors",
169
+ "img_diffuser.text_proj.bias": "model-00001-of-00002.safetensors",
170
+ "img_diffuser.text_proj.weight": "model-00001-of-00002.safetensors",
171
+ "img_norm_out.linear_1.bias": "model-00001-of-00002.safetensors",
172
+ "img_norm_out.linear_1.weight": "model-00001-of-00002.safetensors",
173
+ "img_norm_out.linear_2.bias": "model-00001-of-00002.safetensors",
174
+ "img_norm_out.linear_2.weight": "model-00001-of-00002.safetensors",
175
+ "layers.0.gate": "model-00001-of-00002.safetensors",
176
+ "layers.0.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
177
+ "layers.0.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
178
+ "layers.0.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
179
+ "layers.0.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
180
+ "layers.0.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
181
+ "layers.0.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
182
+ "layers.0.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
183
+ "layers.0.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
184
+ "layers.0.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
185
+ "layers.0.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
186
+ "layers.0.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
187
+ "layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
188
+ "layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
189
+ "layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
190
+ "layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
193
+ "layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
194
+ "layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
195
+ "layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
196
+ "layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
197
+ "layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
198
+ "layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
199
+ "layers.0.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
200
+ "layers.0.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
201
+ "layers.1.gate": "model-00001-of-00002.safetensors",
202
+ "layers.1.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
203
+ "layers.1.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
204
+ "layers.1.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
205
+ "layers.1.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
206
+ "layers.1.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
207
+ "layers.1.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
208
+ "layers.1.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
209
+ "layers.1.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
210
+ "layers.1.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
211
+ "layers.1.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
212
+ "layers.1.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
213
+ "layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
214
+ "layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
215
+ "layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
216
+ "layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
217
+ "layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
218
+ "layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
219
+ "layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
220
+ "layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
221
+ "layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
222
+ "layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
223
+ "layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
224
+ "layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
225
+ "layers.1.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
226
+ "layers.1.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
227
+ "layers.10.gate": "model-00001-of-00002.safetensors",
228
+ "layers.10.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
229
+ "layers.10.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
230
+ "layers.10.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
231
+ "layers.10.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
232
+ "layers.10.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
233
+ "layers.10.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
234
+ "layers.10.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
235
+ "layers.10.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
236
+ "layers.10.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
237
+ "layers.10.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
238
+ "layers.10.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
239
+ "layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
240
+ "layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
241
+ "layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
242
+ "layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
243
+ "layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
244
+ "layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
245
+ "layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
246
+ "layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
247
+ "layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
248
+ "layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
249
+ "layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
250
+ "layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
251
+ "layers.10.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
252
+ "layers.10.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
253
+ "layers.11.gate": "model-00001-of-00002.safetensors",
254
+ "layers.11.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
255
+ "layers.11.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
256
+ "layers.11.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
257
+ "layers.11.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
258
+ "layers.11.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
259
+ "layers.11.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
260
+ "layers.11.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
261
+ "layers.11.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
262
+ "layers.11.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
263
+ "layers.11.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
264
+ "layers.11.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
265
+ "layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
266
+ "layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
267
+ "layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
268
+ "layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
269
+ "layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
270
+ "layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
271
+ "layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
272
+ "layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
273
+ "layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
274
+ "layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
275
+ "layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
276
+ "layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
277
+ "layers.11.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
278
+ "layers.11.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
279
+ "layers.12.gate": "model-00001-of-00002.safetensors",
280
+ "layers.12.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
281
+ "layers.12.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
282
+ "layers.12.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
283
+ "layers.12.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
284
+ "layers.12.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
285
+ "layers.12.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
286
+ "layers.12.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
287
+ "layers.12.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
288
+ "layers.12.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
289
+ "layers.12.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
290
+ "layers.12.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
291
+ "layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
292
+ "layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
293
+ "layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
294
+ "layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
295
+ "layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
296
+ "layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
297
+ "layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
298
+ "layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
299
+ "layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
300
+ "layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
301
+ "layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
302
+ "layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
303
+ "layers.12.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
304
+ "layers.12.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
305
+ "layers.13.gate": "model-00001-of-00002.safetensors",
306
+ "layers.13.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
307
+ "layers.13.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
308
+ "layers.13.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
309
+ "layers.13.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
310
+ "layers.13.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
311
+ "layers.13.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
312
+ "layers.13.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
313
+ "layers.13.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
314
+ "layers.13.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
315
+ "layers.13.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
316
+ "layers.13.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
317
+ "layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
318
+ "layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
319
+ "layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
320
+ "layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
321
+ "layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
322
+ "layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
323
+ "layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
324
+ "layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
325
+ "layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
326
+ "layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
327
+ "layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
328
+ "layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
329
+ "layers.13.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
330
+ "layers.13.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
331
+ "layers.14.gate": "model-00001-of-00002.safetensors",
332
+ "layers.14.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
333
+ "layers.14.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
334
+ "layers.14.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
335
+ "layers.14.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
336
+ "layers.14.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
337
+ "layers.14.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
338
+ "layers.14.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
339
+ "layers.14.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
340
+ "layers.14.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
341
+ "layers.14.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
342
+ "layers.14.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
343
+ "layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
344
+ "layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
345
+ "layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
346
+ "layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
347
+ "layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
348
+ "layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
349
+ "layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
350
+ "layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
351
+ "layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
352
+ "layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
353
+ "layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
354
+ "layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
355
+ "layers.14.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
356
+ "layers.14.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
357
+ "layers.15.gate": "model-00001-of-00002.safetensors",
358
+ "layers.15.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
359
+ "layers.15.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
360
+ "layers.15.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
361
+ "layers.15.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
362
+ "layers.15.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
363
+ "layers.15.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
364
+ "layers.15.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
365
+ "layers.15.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
366
+ "layers.15.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
367
+ "layers.15.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
368
+ "layers.15.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
369
+ "layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
370
+ "layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
371
+ "layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
372
+ "layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
373
+ "layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
374
+ "layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
375
+ "layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
376
+ "layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
377
+ "layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
378
+ "layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
379
+ "layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
380
+ "layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
381
+ "layers.15.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
382
+ "layers.15.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
383
+ "layers.16.gate": "model-00001-of-00002.safetensors",
384
+ "layers.16.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
385
+ "layers.16.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
386
+ "layers.16.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
387
+ "layers.16.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
388
+ "layers.16.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
389
+ "layers.16.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
390
+ "layers.16.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
391
+ "layers.16.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
392
+ "layers.16.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
393
+ "layers.16.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
394
+ "layers.16.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
395
+ "layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
396
+ "layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
397
+ "layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
398
+ "layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
399
+ "layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
400
+ "layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
401
+ "layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
402
+ "layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
403
+ "layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
404
+ "layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
405
+ "layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
406
+ "layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
407
+ "layers.16.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
408
+ "layers.16.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
409
+ "layers.17.gate": "model-00001-of-00002.safetensors",
410
+ "layers.17.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
411
+ "layers.17.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
412
+ "layers.17.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
413
+ "layers.17.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
414
+ "layers.17.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
415
+ "layers.17.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
416
+ "layers.17.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
417
+ "layers.17.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
418
+ "layers.17.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
419
+ "layers.17.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
420
+ "layers.17.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
421
+ "layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
422
+ "layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
423
+ "layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
424
+ "layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
425
+ "layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
426
+ "layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
427
+ "layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
428
+ "layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
429
+ "layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
430
+ "layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
431
+ "layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
432
+ "layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
433
+ "layers.17.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
434
+ "layers.17.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
435
+ "layers.18.gate": "model-00001-of-00002.safetensors",
436
+ "layers.18.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
437
+ "layers.18.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
438
+ "layers.18.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
439
+ "layers.18.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
440
+ "layers.18.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
441
+ "layers.18.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
442
+ "layers.18.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
443
+ "layers.18.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
444
+ "layers.18.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
445
+ "layers.18.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
446
+ "layers.18.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
447
+ "layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
448
+ "layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
449
+ "layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
450
+ "layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
451
+ "layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
452
+ "layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
453
+ "layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
454
+ "layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
455
+ "layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
456
+ "layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
457
+ "layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
458
+ "layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
459
+ "layers.18.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
460
+ "layers.18.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
461
+ "layers.19.gate": "model-00001-of-00002.safetensors",
462
+ "layers.19.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
463
+ "layers.19.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
464
+ "layers.19.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
465
+ "layers.19.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
466
+ "layers.19.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
467
+ "layers.19.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
468
+ "layers.19.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
469
+ "layers.19.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
470
+ "layers.19.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
471
+ "layers.19.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
472
+ "layers.19.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
473
+ "layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
474
+ "layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
475
+ "layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
476
+ "layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
477
+ "layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
478
+ "layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
479
+ "layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
480
+ "layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
481
+ "layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
482
+ "layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
483
+ "layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
484
+ "layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
485
+ "layers.19.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
486
+ "layers.19.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
487
+ "layers.2.gate": "model-00001-of-00002.safetensors",
488
+ "layers.2.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
489
+ "layers.2.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
490
+ "layers.2.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
491
+ "layers.2.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
492
+ "layers.2.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
493
+ "layers.2.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
494
+ "layers.2.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
495
+ "layers.2.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
496
+ "layers.2.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
497
+ "layers.2.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
498
+ "layers.2.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
499
+ "layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
500
+ "layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
501
+ "layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
502
+ "layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
503
+ "layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
504
+ "layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
505
+ "layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
506
+ "layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
507
+ "layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
508
+ "layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
509
+ "layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
510
+ "layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
511
+ "layers.2.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
512
+ "layers.2.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
513
+ "layers.20.gate": "model-00001-of-00002.safetensors",
514
+ "layers.20.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
515
+ "layers.20.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
516
+ "layers.20.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
517
+ "layers.20.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
518
+ "layers.20.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
519
+ "layers.20.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
520
+ "layers.20.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
521
+ "layers.20.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
522
+ "layers.20.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
523
+ "layers.20.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
524
+ "layers.20.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
525
+ "layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
526
+ "layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
527
+ "layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
528
+ "layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
529
+ "layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
530
+ "layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
531
+ "layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
532
+ "layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
533
+ "layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
534
+ "layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
535
+ "layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
536
+ "layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
537
+ "layers.20.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
538
+ "layers.20.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
539
+ "layers.21.gate": "model-00001-of-00002.safetensors",
540
+ "layers.21.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
541
+ "layers.21.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
542
+ "layers.21.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
543
+ "layers.21.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
544
+ "layers.21.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
545
+ "layers.21.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
546
+ "layers.21.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
547
+ "layers.21.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
548
+ "layers.21.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
549
+ "layers.21.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
550
+ "layers.21.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
551
+ "layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
552
+ "layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
553
+ "layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
554
+ "layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
555
+ "layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
556
+ "layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
557
+ "layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
558
+ "layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
559
+ "layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
560
+ "layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
561
+ "layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
562
+ "layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
563
+ "layers.21.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
564
+ "layers.21.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
565
+ "layers.22.gate": "model-00001-of-00002.safetensors",
566
+ "layers.22.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
567
+ "layers.22.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
568
+ "layers.22.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
569
+ "layers.22.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
570
+ "layers.22.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
571
+ "layers.22.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
572
+ "layers.22.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
573
+ "layers.22.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
574
+ "layers.22.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
575
+ "layers.22.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
576
+ "layers.22.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
577
+ "layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
578
+ "layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
579
+ "layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
580
+ "layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
581
+ "layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
582
+ "layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
583
+ "layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
584
+ "layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
585
+ "layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
586
+ "layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
587
+ "layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
588
+ "layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
589
+ "layers.22.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
590
+ "layers.22.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
591
+ "layers.23.gate": "model-00001-of-00002.safetensors",
592
+ "layers.23.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
593
+ "layers.23.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
594
+ "layers.23.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
595
+ "layers.23.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
596
+ "layers.23.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
597
+ "layers.23.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
598
+ "layers.23.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
599
+ "layers.23.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
600
+ "layers.23.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
601
+ "layers.23.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
602
+ "layers.23.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
603
+ "layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
604
+ "layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
605
+ "layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
606
+ "layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
607
+ "layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
608
+ "layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
609
+ "layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
610
+ "layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
611
+ "layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
612
+ "layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
613
+ "layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
614
+ "layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
615
+ "layers.23.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
616
+ "layers.23.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
617
+ "layers.24.gate": "model-00001-of-00002.safetensors",
618
+ "layers.24.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
619
+ "layers.24.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
620
+ "layers.24.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
621
+ "layers.24.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
622
+ "layers.24.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
623
+ "layers.24.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
624
+ "layers.24.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
625
+ "layers.24.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
626
+ "layers.24.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
627
+ "layers.24.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
628
+ "layers.24.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
629
+ "layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
630
+ "layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
631
+ "layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
632
+ "layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
633
+ "layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
634
+ "layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
635
+ "layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
636
+ "layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
637
+ "layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
638
+ "layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
639
+ "layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
640
+ "layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
641
+ "layers.24.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
642
+ "layers.24.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
643
+ "layers.25.gate": "model-00001-of-00002.safetensors",
644
+ "layers.25.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
645
+ "layers.25.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
646
+ "layers.25.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
647
+ "layers.25.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
648
+ "layers.25.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
649
+ "layers.25.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
650
+ "layers.25.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
651
+ "layers.25.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
652
+ "layers.25.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
653
+ "layers.25.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
654
+ "layers.25.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
655
+ "layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
656
+ "layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
657
+ "layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
658
+ "layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
659
+ "layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
660
+ "layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
661
+ "layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
662
+ "layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
663
+ "layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
664
+ "layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
665
+ "layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
666
+ "layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
667
+ "layers.25.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
668
+ "layers.25.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
669
+ "layers.26.gate": "model-00001-of-00002.safetensors",
670
+ "layers.26.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
671
+ "layers.26.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
672
+ "layers.26.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
673
+ "layers.26.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
674
+ "layers.26.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
675
+ "layers.26.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
676
+ "layers.26.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
677
+ "layers.26.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
678
+ "layers.26.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
679
+ "layers.26.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
680
+ "layers.26.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
681
+ "layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
682
+ "layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
683
+ "layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
684
+ "layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
685
+ "layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
686
+ "layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
687
+ "layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
688
+ "layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
689
+ "layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
690
+ "layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
691
+ "layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
692
+ "layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
693
+ "layers.26.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
694
+ "layers.26.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
695
+ "layers.27.gate": "model-00001-of-00002.safetensors",
696
+ "layers.27.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
697
+ "layers.27.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
698
+ "layers.27.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
699
+ "layers.27.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
700
+ "layers.27.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
701
+ "layers.27.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
702
+ "layers.27.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
703
+ "layers.27.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
704
+ "layers.27.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
705
+ "layers.27.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
706
+ "layers.27.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
707
+ "layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
708
+ "layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
709
+ "layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
710
+ "layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
711
+ "layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
712
+ "layers.27.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
713
+ "layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
714
+ "layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
715
+ "layers.27.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
716
+ "layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
717
+ "layers.27.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
718
+ "layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
719
+ "layers.27.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
720
+ "layers.27.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
721
+ "layers.3.gate": "model-00001-of-00002.safetensors",
722
+ "layers.3.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
723
+ "layers.3.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
724
+ "layers.3.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
725
+ "layers.3.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
726
+ "layers.3.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
727
+ "layers.3.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
728
+ "layers.3.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
729
+ "layers.3.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
730
+ "layers.3.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
731
+ "layers.3.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
732
+ "layers.3.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
733
+ "layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
734
+ "layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
735
+ "layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
736
+ "layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
737
+ "layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
738
+ "layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
739
+ "layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
740
+ "layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
741
+ "layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
742
+ "layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
743
+ "layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
744
+ "layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
745
+ "layers.3.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
746
+ "layers.3.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
747
+ "layers.4.gate": "model-00001-of-00002.safetensors",
748
+ "layers.4.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
749
+ "layers.4.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
750
+ "layers.4.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
751
+ "layers.4.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
752
+ "layers.4.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
753
+ "layers.4.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
754
+ "layers.4.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
755
+ "layers.4.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
756
+ "layers.4.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
757
+ "layers.4.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
758
+ "layers.4.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
759
+ "layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
760
+ "layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
761
+ "layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
762
+ "layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
763
+ "layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
764
+ "layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
765
+ "layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
766
+ "layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
767
+ "layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
768
+ "layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
769
+ "layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
770
+ "layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
771
+ "layers.4.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
772
+ "layers.4.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
773
+ "layers.5.gate": "model-00001-of-00002.safetensors",
774
+ "layers.5.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
775
+ "layers.5.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
776
+ "layers.5.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
777
+ "layers.5.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
778
+ "layers.5.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
779
+ "layers.5.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
780
+ "layers.5.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
781
+ "layers.5.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
782
+ "layers.5.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
783
+ "layers.5.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
784
+ "layers.5.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
785
+ "layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
786
+ "layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
787
+ "layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
788
+ "layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
789
+ "layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
790
+ "layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
791
+ "layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
792
+ "layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
793
+ "layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
794
+ "layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
795
+ "layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
796
+ "layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
797
+ "layers.5.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
798
+ "layers.5.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
799
+ "layers.6.gate": "model-00001-of-00002.safetensors",
800
+ "layers.6.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
801
+ "layers.6.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
802
+ "layers.6.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
803
+ "layers.6.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
804
+ "layers.6.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
805
+ "layers.6.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
806
+ "layers.6.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
807
+ "layers.6.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
808
+ "layers.6.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
809
+ "layers.6.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
810
+ "layers.6.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
811
+ "layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
812
+ "layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
813
+ "layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
814
+ "layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
815
+ "layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
816
+ "layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
817
+ "layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
818
+ "layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
819
+ "layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
820
+ "layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
821
+ "layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
822
+ "layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
823
+ "layers.6.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
824
+ "layers.6.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
825
+ "layers.7.gate": "model-00001-of-00002.safetensors",
826
+ "layers.7.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
827
+ "layers.7.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
828
+ "layers.7.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
829
+ "layers.7.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
830
+ "layers.7.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
831
+ "layers.7.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
832
+ "layers.7.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
833
+ "layers.7.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
834
+ "layers.7.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
835
+ "layers.7.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
836
+ "layers.7.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
837
+ "layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
838
+ "layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
839
+ "layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
840
+ "layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
841
+ "layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
842
+ "layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
843
+ "layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
844
+ "layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
845
+ "layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
846
+ "layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
847
+ "layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
848
+ "layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
849
+ "layers.7.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
850
+ "layers.7.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
851
+ "layers.8.gate": "model-00001-of-00002.safetensors",
852
+ "layers.8.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
853
+ "layers.8.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
854
+ "layers.8.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
855
+ "layers.8.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
856
+ "layers.8.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
857
+ "layers.8.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
858
+ "layers.8.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
859
+ "layers.8.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
860
+ "layers.8.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
861
+ "layers.8.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
862
+ "layers.8.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
863
+ "layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
864
+ "layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
865
+ "layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
866
+ "layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
867
+ "layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
868
+ "layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
869
+ "layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
870
+ "layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
871
+ "layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
872
+ "layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
873
+ "layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
874
+ "layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
875
+ "layers.8.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
876
+ "layers.8.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
877
+ "layers.9.gate": "model-00001-of-00002.safetensors",
878
+ "layers.9.img_attn1.norm_k.bias": "model-00001-of-00002.safetensors",
879
+ "layers.9.img_attn1.norm_k.weight": "model-00001-of-00002.safetensors",
880
+ "layers.9.img_attn1.norm_q.bias": "model-00001-of-00002.safetensors",
881
+ "layers.9.img_attn1.norm_q.weight": "model-00001-of-00002.safetensors",
882
+ "layers.9.img_attn1.to_k.weight": "model-00001-of-00002.safetensors",
883
+ "layers.9.img_attn1.to_q.weight": "model-00001-of-00002.safetensors",
884
+ "layers.9.img_attn1.to_v.weight": "model-00001-of-00002.safetensors",
885
+ "layers.9.img_post_ffn_norm.weight": "model-00001-of-00002.safetensors",
886
+ "layers.9.img_post_mixed_attn_norm.weight": "model-00001-of-00002.safetensors",
887
+ "layers.9.img_scale_shift.linear.bias": "model-00001-of-00002.safetensors",
888
+ "layers.9.img_scale_shift.linear.weight": "model-00001-of-00002.safetensors",
889
+ "layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
890
+ "layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
891
+ "layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
892
+ "layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
893
+ "layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
894
+ "layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
895
+ "layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
896
+ "layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
897
+ "layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
898
+ "layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
899
+ "layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
900
+ "layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
901
+ "layers.9.to_img_diffuser.bias": "model-00001-of-00002.safetensors",
902
+ "layers.9.to_img_diffuser.weight": "model-00001-of-00002.safetensors",
903
+ "lm_head.weight": "model-00002-of-00002.safetensors",
904
+ "norm.weight": "model-00001-of-00002.safetensors",
905
+ "patch_embedder.proj.bias": "model-00001-of-00002.safetensors",
906
+ "patch_embedder.proj.weight": "model-00001-of-00002.safetensors",
907
+ "t_embedder.timestep_embedder.linear_1.bias": "model-00001-of-00002.safetensors",
908
+ "t_embedder.timestep_embedder.linear_1.weight": "model-00001-of-00002.safetensors",
909
+ "t_embedder.timestep_embedder.linear_2.bias": "model-00001-of-00002.safetensors",
910
+ "t_embedder.timestep_embedder.linear_2.weight": "model-00001-of-00002.safetensors",
911
+ "vae.decoder.conv_in.bias": "model-00002-of-00002.safetensors",
912
+ "vae.decoder.conv_in.weight": "model-00002-of-00002.safetensors",
913
+ "vae.decoder.conv_norm_out.bias": "model-00002-of-00002.safetensors",
914
+ "vae.decoder.conv_norm_out.weight": "model-00002-of-00002.safetensors",
915
+ "vae.decoder.conv_out.bias": "model-00002-of-00002.safetensors",
916
+ "vae.decoder.conv_out.weight": "model-00002-of-00002.safetensors",
917
+ "vae.decoder.mid_block.attentions.0.group_norm.bias": "model-00002-of-00002.safetensors",
918
+ "vae.decoder.mid_block.attentions.0.group_norm.weight": "model-00002-of-00002.safetensors",
919
+ "vae.decoder.mid_block.attentions.0.to_k.bias": "model-00002-of-00002.safetensors",
920
+ "vae.decoder.mid_block.attentions.0.to_k.weight": "model-00002-of-00002.safetensors",
921
+ "vae.decoder.mid_block.attentions.0.to_out.0.bias": "model-00002-of-00002.safetensors",
922
+ "vae.decoder.mid_block.attentions.0.to_out.0.weight": "model-00002-of-00002.safetensors",
923
+ "vae.decoder.mid_block.attentions.0.to_q.bias": "model-00002-of-00002.safetensors",
924
+ "vae.decoder.mid_block.attentions.0.to_q.weight": "model-00002-of-00002.safetensors",
925
+ "vae.decoder.mid_block.attentions.0.to_v.bias": "model-00002-of-00002.safetensors",
926
+ "vae.decoder.mid_block.attentions.0.to_v.weight": "model-00002-of-00002.safetensors",
927
+ "vae.decoder.mid_block.resnets.0.conv1.bias": "model-00002-of-00002.safetensors",
928
+ "vae.decoder.mid_block.resnets.0.conv1.weight": "model-00002-of-00002.safetensors",
929
+ "vae.decoder.mid_block.resnets.0.conv2.bias": "model-00002-of-00002.safetensors",
930
+ "vae.decoder.mid_block.resnets.0.conv2.weight": "model-00002-of-00002.safetensors",
931
+ "vae.decoder.mid_block.resnets.0.norm1.bias": "model-00002-of-00002.safetensors",
932
+ "vae.decoder.mid_block.resnets.0.norm1.weight": "model-00002-of-00002.safetensors",
933
+ "vae.decoder.mid_block.resnets.0.norm2.bias": "model-00002-of-00002.safetensors",
934
+ "vae.decoder.mid_block.resnets.0.norm2.weight": "model-00002-of-00002.safetensors",
935
+ "vae.decoder.mid_block.resnets.1.conv1.bias": "model-00002-of-00002.safetensors",
936
+ "vae.decoder.mid_block.resnets.1.conv1.weight": "model-00002-of-00002.safetensors",
937
+ "vae.decoder.mid_block.resnets.1.conv2.bias": "model-00002-of-00002.safetensors",
938
+ "vae.decoder.mid_block.resnets.1.conv2.weight": "model-00002-of-00002.safetensors",
939
+ "vae.decoder.mid_block.resnets.1.norm1.bias": "model-00002-of-00002.safetensors",
940
+ "vae.decoder.mid_block.resnets.1.norm1.weight": "model-00002-of-00002.safetensors",
941
+ "vae.decoder.mid_block.resnets.1.norm2.bias": "model-00002-of-00002.safetensors",
942
+ "vae.decoder.mid_block.resnets.1.norm2.weight": "model-00002-of-00002.safetensors",
943
+ "vae.decoder.up_blocks.0.resnets.0.conv1.bias": "model-00002-of-00002.safetensors",
944
+ "vae.decoder.up_blocks.0.resnets.0.conv1.weight": "model-00002-of-00002.safetensors",
945
+ "vae.decoder.up_blocks.0.resnets.0.conv2.bias": "model-00002-of-00002.safetensors",
946
+ "vae.decoder.up_blocks.0.resnets.0.conv2.weight": "model-00002-of-00002.safetensors",
947
+ "vae.decoder.up_blocks.0.resnets.0.norm1.bias": "model-00002-of-00002.safetensors",
948
+ "vae.decoder.up_blocks.0.resnets.0.norm1.weight": "model-00002-of-00002.safetensors",
949
+ "vae.decoder.up_blocks.0.resnets.0.norm2.bias": "model-00002-of-00002.safetensors",
950
+ "vae.decoder.up_blocks.0.resnets.0.norm2.weight": "model-00002-of-00002.safetensors",
951
+ "vae.decoder.up_blocks.0.resnets.1.conv1.bias": "model-00002-of-00002.safetensors",
952
+ "vae.decoder.up_blocks.0.resnets.1.conv1.weight": "model-00002-of-00002.safetensors",
953
+ "vae.decoder.up_blocks.0.resnets.1.conv2.bias": "model-00002-of-00002.safetensors",
954
+ "vae.decoder.up_blocks.0.resnets.1.conv2.weight": "model-00002-of-00002.safetensors",
955
+ "vae.decoder.up_blocks.0.resnets.1.norm1.bias": "model-00002-of-00002.safetensors",
956
+ "vae.decoder.up_blocks.0.resnets.1.norm1.weight": "model-00002-of-00002.safetensors",
957
+ "vae.decoder.up_blocks.0.resnets.1.norm2.bias": "model-00002-of-00002.safetensors",
958
+ "vae.decoder.up_blocks.0.resnets.1.norm2.weight": "model-00002-of-00002.safetensors",
959
+ "vae.decoder.up_blocks.0.resnets.2.conv1.bias": "model-00002-of-00002.safetensors",
960
+ "vae.decoder.up_blocks.0.resnets.2.conv1.weight": "model-00002-of-00002.safetensors",
961
+ "vae.decoder.up_blocks.0.resnets.2.conv2.bias": "model-00002-of-00002.safetensors",
962
+ "vae.decoder.up_blocks.0.resnets.2.conv2.weight": "model-00002-of-00002.safetensors",
963
+ "vae.decoder.up_blocks.0.resnets.2.norm1.bias": "model-00002-of-00002.safetensors",
964
+ "vae.decoder.up_blocks.0.resnets.2.norm1.weight": "model-00002-of-00002.safetensors",
965
+ "vae.decoder.up_blocks.0.resnets.2.norm2.bias": "model-00002-of-00002.safetensors",
966
+ "vae.decoder.up_blocks.0.resnets.2.norm2.weight": "model-00002-of-00002.safetensors",
967
+ "vae.decoder.up_blocks.0.upsamplers.0.conv.bias": "model-00002-of-00002.safetensors",
968
+ "vae.decoder.up_blocks.0.upsamplers.0.conv.weight": "model-00002-of-00002.safetensors",
969
+ "vae.decoder.up_blocks.1.resnets.0.conv1.bias": "model-00002-of-00002.safetensors",
970
+ "vae.decoder.up_blocks.1.resnets.0.conv1.weight": "model-00002-of-00002.safetensors",
971
+ "vae.decoder.up_blocks.1.resnets.0.conv2.bias": "model-00002-of-00002.safetensors",
972
+ "vae.decoder.up_blocks.1.resnets.0.conv2.weight": "model-00002-of-00002.safetensors",
973
+ "vae.decoder.up_blocks.1.resnets.0.norm1.bias": "model-00002-of-00002.safetensors",
974
+ "vae.decoder.up_blocks.1.resnets.0.norm1.weight": "model-00002-of-00002.safetensors",
975
+ "vae.decoder.up_blocks.1.resnets.0.norm2.bias": "model-00002-of-00002.safetensors",
976
+ "vae.decoder.up_blocks.1.resnets.0.norm2.weight": "model-00002-of-00002.safetensors",
977
+ "vae.decoder.up_blocks.1.resnets.1.conv1.bias": "model-00002-of-00002.safetensors",
978
+ "vae.decoder.up_blocks.1.resnets.1.conv1.weight": "model-00002-of-00002.safetensors",
979
+ "vae.decoder.up_blocks.1.resnets.1.conv2.bias": "model-00002-of-00002.safetensors",
980
+ "vae.decoder.up_blocks.1.resnets.1.conv2.weight": "model-00002-of-00002.safetensors",
981
+ "vae.decoder.up_blocks.1.resnets.1.norm1.bias": "model-00002-of-00002.safetensors",
982
+ "vae.decoder.up_blocks.1.resnets.1.norm1.weight": "model-00002-of-00002.safetensors",
983
+ "vae.decoder.up_blocks.1.resnets.1.norm2.bias": "model-00002-of-00002.safetensors",
984
+ "vae.decoder.up_blocks.1.resnets.1.norm2.weight": "model-00002-of-00002.safetensors",
985
+ "vae.decoder.up_blocks.1.resnets.2.conv1.bias": "model-00002-of-00002.safetensors",
986
+ "vae.decoder.up_blocks.1.resnets.2.conv1.weight": "model-00002-of-00002.safetensors",
987
+ "vae.decoder.up_blocks.1.resnets.2.conv2.bias": "model-00002-of-00002.safetensors",
988
+ "vae.decoder.up_blocks.1.resnets.2.conv2.weight": "model-00002-of-00002.safetensors",
989
+ "vae.decoder.up_blocks.1.resnets.2.norm1.bias": "model-00002-of-00002.safetensors",
990
+ "vae.decoder.up_blocks.1.resnets.2.norm1.weight": "model-00002-of-00002.safetensors",
991
+ "vae.decoder.up_blocks.1.resnets.2.norm2.bias": "model-00002-of-00002.safetensors",
992
+ "vae.decoder.up_blocks.1.resnets.2.norm2.weight": "model-00002-of-00002.safetensors",
993
+ "vae.decoder.up_blocks.1.upsamplers.0.conv.bias": "model-00002-of-00002.safetensors",
994
+ "vae.decoder.up_blocks.1.upsamplers.0.conv.weight": "model-00002-of-00002.safetensors",
995
+ "vae.decoder.up_blocks.2.resnets.0.conv1.bias": "model-00002-of-00002.safetensors",
996
+ "vae.decoder.up_blocks.2.resnets.0.conv1.weight": "model-00002-of-00002.safetensors",
997
+ "vae.decoder.up_blocks.2.resnets.0.conv2.bias": "model-00002-of-00002.safetensors",
998
+ "vae.decoder.up_blocks.2.resnets.0.conv2.weight": "model-00002-of-00002.safetensors",
999
+ "vae.decoder.up_blocks.2.resnets.0.conv_shortcut.bias": "model-00002-of-00002.safetensors",
1000
+ "vae.decoder.up_blocks.2.resnets.0.conv_shortcut.weight": "model-00002-of-00002.safetensors",
1001
+ "vae.decoder.up_blocks.2.resnets.0.norm1.bias": "model-00002-of-00002.safetensors",
1002
+ "vae.decoder.up_blocks.2.resnets.0.norm1.weight": "model-00002-of-00002.safetensors",
1003
+ "vae.decoder.up_blocks.2.resnets.0.norm2.bias": "model-00002-of-00002.safetensors",
1004
+ "vae.decoder.up_blocks.2.resnets.0.norm2.weight": "model-00002-of-00002.safetensors",
1005
+ "vae.decoder.up_blocks.2.resnets.1.conv1.bias": "model-00002-of-00002.safetensors",
1006
+ "vae.decoder.up_blocks.2.resnets.1.conv1.weight": "model-00002-of-00002.safetensors",
1007
+ "vae.decoder.up_blocks.2.resnets.1.conv2.bias": "model-00002-of-00002.safetensors",
1008
+ "vae.decoder.up_blocks.2.resnets.1.conv2.weight": "model-00002-of-00002.safetensors",
1009
+ "vae.decoder.up_blocks.2.resnets.1.norm1.bias": "model-00002-of-00002.safetensors",
1010
+ "vae.decoder.up_blocks.2.resnets.1.norm1.weight": "model-00002-of-00002.safetensors",
1011
+ "vae.decoder.up_blocks.2.resnets.1.norm2.bias": "model-00002-of-00002.safetensors",
1012
+ "vae.decoder.up_blocks.2.resnets.1.norm2.weight": "model-00002-of-00002.safetensors",
1013
+ "vae.decoder.up_blocks.2.resnets.2.conv1.bias": "model-00002-of-00002.safetensors",
1014
+ "vae.decoder.up_blocks.2.resnets.2.conv1.weight": "model-00002-of-00002.safetensors",
1015
+ "vae.decoder.up_blocks.2.resnets.2.conv2.bias": "model-00002-of-00002.safetensors",
1016
+ "vae.decoder.up_blocks.2.resnets.2.conv2.weight": "model-00002-of-00002.safetensors",
1017
+ "vae.decoder.up_blocks.2.resnets.2.norm1.bias": "model-00002-of-00002.safetensors",
1018
+ "vae.decoder.up_blocks.2.resnets.2.norm1.weight": "model-00002-of-00002.safetensors",
1019
+ "vae.decoder.up_blocks.2.resnets.2.norm2.bias": "model-00002-of-00002.safetensors",
1020
+ "vae.decoder.up_blocks.2.resnets.2.norm2.weight": "model-00002-of-00002.safetensors",
1021
+ "vae.decoder.up_blocks.2.upsamplers.0.conv.bias": "model-00002-of-00002.safetensors",
1022
+ "vae.decoder.up_blocks.2.upsamplers.0.conv.weight": "model-00002-of-00002.safetensors",
1023
+ "vae.decoder.up_blocks.3.resnets.0.conv1.bias": "model-00002-of-00002.safetensors",
1024
+ "vae.decoder.up_blocks.3.resnets.0.conv1.weight": "model-00002-of-00002.safetensors",
1025
+ "vae.decoder.up_blocks.3.resnets.0.conv2.bias": "model-00002-of-00002.safetensors",
1026
+ "vae.decoder.up_blocks.3.resnets.0.conv2.weight": "model-00002-of-00002.safetensors",
1027
+ "vae.decoder.up_blocks.3.resnets.0.conv_shortcut.bias": "model-00002-of-00002.safetensors",
1028
+ "vae.decoder.up_blocks.3.resnets.0.conv_shortcut.weight": "model-00002-of-00002.safetensors",
1029
+ "vae.decoder.up_blocks.3.resnets.0.norm1.bias": "model-00002-of-00002.safetensors",
1030
+ "vae.decoder.up_blocks.3.resnets.0.norm1.weight": "model-00002-of-00002.safetensors",
1031
+ "vae.decoder.up_blocks.3.resnets.0.norm2.bias": "model-00002-of-00002.safetensors",
1032
+ "vae.decoder.up_blocks.3.resnets.0.norm2.weight": "model-00002-of-00002.safetensors",
1033
+ "vae.decoder.up_blocks.3.resnets.1.conv1.bias": "model-00002-of-00002.safetensors",
1034
+ "vae.decoder.up_blocks.3.resnets.1.conv1.weight": "model-00002-of-00002.safetensors",
1035
+ "vae.decoder.up_blocks.3.resnets.1.conv2.bias": "model-00002-of-00002.safetensors",
1036
+ "vae.decoder.up_blocks.3.resnets.1.conv2.weight": "model-00002-of-00002.safetensors",
1037
+ "vae.decoder.up_blocks.3.resnets.1.norm1.bias": "model-00002-of-00002.safetensors",
1038
+ "vae.decoder.up_blocks.3.resnets.1.norm1.weight": "model-00002-of-00002.safetensors",
1039
+ "vae.decoder.up_blocks.3.resnets.1.norm2.bias": "model-00002-of-00002.safetensors",
1040
+ "vae.decoder.up_blocks.3.resnets.1.norm2.weight": "model-00002-of-00002.safetensors",
1041
+ "vae.decoder.up_blocks.3.resnets.2.conv1.bias": "model-00002-of-00002.safetensors",
1042
+ "vae.decoder.up_blocks.3.resnets.2.conv1.weight": "model-00002-of-00002.safetensors",
1043
+ "vae.decoder.up_blocks.3.resnets.2.conv2.bias": "model-00002-of-00002.safetensors",
1044
+ "vae.decoder.up_blocks.3.resnets.2.conv2.weight": "model-00002-of-00002.safetensors",
1045
+ "vae.decoder.up_blocks.3.resnets.2.norm1.bias": "model-00002-of-00002.safetensors",
1046
+ "vae.decoder.up_blocks.3.resnets.2.norm1.weight": "model-00002-of-00002.safetensors",
1047
+ "vae.decoder.up_blocks.3.resnets.2.norm2.bias": "model-00002-of-00002.safetensors",
1048
+ "vae.decoder.up_blocks.3.resnets.2.norm2.weight": "model-00002-of-00002.safetensors",
1049
+ "vae.encoder.conv_in.bias": "model-00002-of-00002.safetensors",
1050
+ "vae.encoder.conv_in.weight": "model-00002-of-00002.safetensors",
1051
+ "vae.encoder.conv_norm_out.bias": "model-00002-of-00002.safetensors",
1052
+ "vae.encoder.conv_norm_out.weight": "model-00002-of-00002.safetensors",
1053
+ "vae.encoder.conv_out.bias": "model-00002-of-00002.safetensors",
1054
+ "vae.encoder.conv_out.weight": "model-00002-of-00002.safetensors",
1055
+ "vae.encoder.down_blocks.0.downsamplers.0.conv.bias": "model-00002-of-00002.safetensors",
1056
+ "vae.encoder.down_blocks.0.downsamplers.0.conv.weight": "model-00002-of-00002.safetensors",
1057
+ "vae.encoder.down_blocks.0.resnets.0.conv1.bias": "model-00002-of-00002.safetensors",
1058
+ "vae.encoder.down_blocks.0.resnets.0.conv1.weight": "model-00002-of-00002.safetensors",
1059
+ "vae.encoder.down_blocks.0.resnets.0.conv2.bias": "model-00002-of-00002.safetensors",
1060
+ "vae.encoder.down_blocks.0.resnets.0.conv2.weight": "model-00002-of-00002.safetensors",
1061
+ "vae.encoder.down_blocks.0.resnets.0.norm1.bias": "model-00002-of-00002.safetensors",
1062
+ "vae.encoder.down_blocks.0.resnets.0.norm1.weight": "model-00002-of-00002.safetensors",
1063
+ "vae.encoder.down_blocks.0.resnets.0.norm2.bias": "model-00002-of-00002.safetensors",
1064
+ "vae.encoder.down_blocks.0.resnets.0.norm2.weight": "model-00002-of-00002.safetensors",
1065
+ "vae.encoder.down_blocks.0.resnets.1.conv1.bias": "model-00002-of-00002.safetensors",
1066
+ "vae.encoder.down_blocks.0.resnets.1.conv1.weight": "model-00002-of-00002.safetensors",
1067
+ "vae.encoder.down_blocks.0.resnets.1.conv2.bias": "model-00002-of-00002.safetensors",
1068
+ "vae.encoder.down_blocks.0.resnets.1.conv2.weight": "model-00002-of-00002.safetensors",
1069
+ "vae.encoder.down_blocks.0.resnets.1.norm1.bias": "model-00002-of-00002.safetensors",
1070
+ "vae.encoder.down_blocks.0.resnets.1.norm1.weight": "model-00002-of-00002.safetensors",
1071
+ "vae.encoder.down_blocks.0.resnets.1.norm2.bias": "model-00002-of-00002.safetensors",
1072
+ "vae.encoder.down_blocks.0.resnets.1.norm2.weight": "model-00002-of-00002.safetensors",
1073
+ "vae.encoder.down_blocks.1.downsamplers.0.conv.bias": "model-00002-of-00002.safetensors",
1074
+ "vae.encoder.down_blocks.1.downsamplers.0.conv.weight": "model-00002-of-00002.safetensors",
1075
+ "vae.encoder.down_blocks.1.resnets.0.conv1.bias": "model-00002-of-00002.safetensors",
1076
+ "vae.encoder.down_blocks.1.resnets.0.conv1.weight": "model-00002-of-00002.safetensors",
1077
+ "vae.encoder.down_blocks.1.resnets.0.conv2.bias": "model-00002-of-00002.safetensors",
1078
+ "vae.encoder.down_blocks.1.resnets.0.conv2.weight": "model-00002-of-00002.safetensors",
1079
+ "vae.encoder.down_blocks.1.resnets.0.conv_shortcut.bias": "model-00002-of-00002.safetensors",
1080
+ "vae.encoder.down_blocks.1.resnets.0.conv_shortcut.weight": "model-00002-of-00002.safetensors",
1081
+ "vae.encoder.down_blocks.1.resnets.0.norm1.bias": "model-00002-of-00002.safetensors",
1082
+ "vae.encoder.down_blocks.1.resnets.0.norm1.weight": "model-00002-of-00002.safetensors",
1083
+ "vae.encoder.down_blocks.1.resnets.0.norm2.bias": "model-00002-of-00002.safetensors",
1084
+ "vae.encoder.down_blocks.1.resnets.0.norm2.weight": "model-00002-of-00002.safetensors",
1085
+ "vae.encoder.down_blocks.1.resnets.1.conv1.bias": "model-00002-of-00002.safetensors",
1086
+ "vae.encoder.down_blocks.1.resnets.1.conv1.weight": "model-00002-of-00002.safetensors",
1087
+ "vae.encoder.down_blocks.1.resnets.1.conv2.bias": "model-00002-of-00002.safetensors",
1088
+ "vae.encoder.down_blocks.1.resnets.1.conv2.weight": "model-00002-of-00002.safetensors",
1089
+ "vae.encoder.down_blocks.1.resnets.1.norm1.bias": "model-00002-of-00002.safetensors",
1090
+ "vae.encoder.down_blocks.1.resnets.1.norm1.weight": "model-00002-of-00002.safetensors",
1091
+ "vae.encoder.down_blocks.1.resnets.1.norm2.bias": "model-00002-of-00002.safetensors",
1092
+ "vae.encoder.down_blocks.1.resnets.1.norm2.weight": "model-00002-of-00002.safetensors",
1093
+ "vae.encoder.down_blocks.2.downsamplers.0.conv.bias": "model-00002-of-00002.safetensors",
1094
+ "vae.encoder.down_blocks.2.downsamplers.0.conv.weight": "model-00002-of-00002.safetensors",
1095
+ "vae.encoder.down_blocks.2.resnets.0.conv1.bias": "model-00002-of-00002.safetensors",
1096
+ "vae.encoder.down_blocks.2.resnets.0.conv1.weight": "model-00002-of-00002.safetensors",
1097
+ "vae.encoder.down_blocks.2.resnets.0.conv2.bias": "model-00002-of-00002.safetensors",
1098
+ "vae.encoder.down_blocks.2.resnets.0.conv2.weight": "model-00002-of-00002.safetensors",
1099
+ "vae.encoder.down_blocks.2.resnets.0.conv_shortcut.bias": "model-00002-of-00002.safetensors",
1100
+ "vae.encoder.down_blocks.2.resnets.0.conv_shortcut.weight": "model-00002-of-00002.safetensors",
1101
+ "vae.encoder.down_blocks.2.resnets.0.norm1.bias": "model-00002-of-00002.safetensors",
1102
+ "vae.encoder.down_blocks.2.resnets.0.norm1.weight": "model-00002-of-00002.safetensors",
1103
+ "vae.encoder.down_blocks.2.resnets.0.norm2.bias": "model-00002-of-00002.safetensors",
1104
+ "vae.encoder.down_blocks.2.resnets.0.norm2.weight": "model-00002-of-00002.safetensors",
1105
+ "vae.encoder.down_blocks.2.resnets.1.conv1.bias": "model-00002-of-00002.safetensors",
1106
+ "vae.encoder.down_blocks.2.resnets.1.conv1.weight": "model-00002-of-00002.safetensors",
1107
+ "vae.encoder.down_blocks.2.resnets.1.conv2.bias": "model-00002-of-00002.safetensors",
1108
+ "vae.encoder.down_blocks.2.resnets.1.conv2.weight": "model-00002-of-00002.safetensors",
1109
+ "vae.encoder.down_blocks.2.resnets.1.norm1.bias": "model-00002-of-00002.safetensors",
1110
+ "vae.encoder.down_blocks.2.resnets.1.norm1.weight": "model-00002-of-00002.safetensors",
1111
+ "vae.encoder.down_blocks.2.resnets.1.norm2.bias": "model-00002-of-00002.safetensors",
1112
+ "vae.encoder.down_blocks.2.resnets.1.norm2.weight": "model-00002-of-00002.safetensors",
1113
+ "vae.encoder.down_blocks.3.resnets.0.conv1.bias": "model-00002-of-00002.safetensors",
1114
+ "vae.encoder.down_blocks.3.resnets.0.conv1.weight": "model-00002-of-00002.safetensors",
1115
+ "vae.encoder.down_blocks.3.resnets.0.conv2.bias": "model-00002-of-00002.safetensors",
1116
+ "vae.encoder.down_blocks.3.resnets.0.conv2.weight": "model-00002-of-00002.safetensors",
1117
+ "vae.encoder.down_blocks.3.resnets.0.norm1.bias": "model-00002-of-00002.safetensors",
1118
+ "vae.encoder.down_blocks.3.resnets.0.norm1.weight": "model-00002-of-00002.safetensors",
1119
+ "vae.encoder.down_blocks.3.resnets.0.norm2.bias": "model-00002-of-00002.safetensors",
1120
+ "vae.encoder.down_blocks.3.resnets.0.norm2.weight": "model-00002-of-00002.safetensors",
1121
+ "vae.encoder.down_blocks.3.resnets.1.conv1.bias": "model-00002-of-00002.safetensors",
1122
+ "vae.encoder.down_blocks.3.resnets.1.conv1.weight": "model-00002-of-00002.safetensors",
1123
+ "vae.encoder.down_blocks.3.resnets.1.conv2.bias": "model-00002-of-00002.safetensors",
1124
+ "vae.encoder.down_blocks.3.resnets.1.conv2.weight": "model-00002-of-00002.safetensors",
1125
+ "vae.encoder.down_blocks.3.resnets.1.norm1.bias": "model-00002-of-00002.safetensors",
1126
+ "vae.encoder.down_blocks.3.resnets.1.norm1.weight": "model-00002-of-00002.safetensors",
1127
+ "vae.encoder.down_blocks.3.resnets.1.norm2.bias": "model-00002-of-00002.safetensors",
1128
+ "vae.encoder.down_blocks.3.resnets.1.norm2.weight": "model-00002-of-00002.safetensors",
1129
+ "vae.encoder.mid_block.attentions.0.group_norm.bias": "model-00002-of-00002.safetensors",
1130
+ "vae.encoder.mid_block.attentions.0.group_norm.weight": "model-00002-of-00002.safetensors",
1131
+ "vae.encoder.mid_block.attentions.0.to_k.bias": "model-00002-of-00002.safetensors",
1132
+ "vae.encoder.mid_block.attentions.0.to_k.weight": "model-00002-of-00002.safetensors",
1133
+ "vae.encoder.mid_block.attentions.0.to_out.0.bias": "model-00002-of-00002.safetensors",
1134
+ "vae.encoder.mid_block.attentions.0.to_out.0.weight": "model-00002-of-00002.safetensors",
1135
+ "vae.encoder.mid_block.attentions.0.to_q.bias": "model-00002-of-00002.safetensors",
1136
+ "vae.encoder.mid_block.attentions.0.to_q.weight": "model-00002-of-00002.safetensors",
1137
+ "vae.encoder.mid_block.attentions.0.to_v.bias": "model-00002-of-00002.safetensors",
1138
+ "vae.encoder.mid_block.attentions.0.to_v.weight": "model-00002-of-00002.safetensors",
1139
+ "vae.encoder.mid_block.resnets.0.conv1.bias": "model-00002-of-00002.safetensors",
1140
+ "vae.encoder.mid_block.resnets.0.conv1.weight": "model-00002-of-00002.safetensors",
1141
+ "vae.encoder.mid_block.resnets.0.conv2.bias": "model-00002-of-00002.safetensors",
1142
+ "vae.encoder.mid_block.resnets.0.conv2.weight": "model-00002-of-00002.safetensors",
1143
+ "vae.encoder.mid_block.resnets.0.norm1.bias": "model-00002-of-00002.safetensors",
1144
+ "vae.encoder.mid_block.resnets.0.norm1.weight": "model-00002-of-00002.safetensors",
1145
+ "vae.encoder.mid_block.resnets.0.norm2.bias": "model-00002-of-00002.safetensors",
1146
+ "vae.encoder.mid_block.resnets.0.norm2.weight": "model-00002-of-00002.safetensors",
1147
+ "vae.encoder.mid_block.resnets.1.conv1.bias": "model-00002-of-00002.safetensors",
1148
+ "vae.encoder.mid_block.resnets.1.conv1.weight": "model-00002-of-00002.safetensors",
1149
+ "vae.encoder.mid_block.resnets.1.conv2.bias": "model-00002-of-00002.safetensors",
1150
+ "vae.encoder.mid_block.resnets.1.conv2.weight": "model-00002-of-00002.safetensors",
1151
+ "vae.encoder.mid_block.resnets.1.norm1.bias": "model-00002-of-00002.safetensors",
1152
+ "vae.encoder.mid_block.resnets.1.norm1.weight": "model-00002-of-00002.safetensors",
1153
+ "vae.encoder.mid_block.resnets.1.norm2.bias": "model-00002-of-00002.safetensors",
1154
+ "vae.encoder.mid_block.resnets.1.norm2.weight": "model-00002-of-00002.safetensors",
1155
+ "vae.post_quant_conv.bias": "model-00002-of-00002.safetensors",
1156
+ "vae.post_quant_conv.weight": "model-00002-of-00002.safetensors",
1157
+ "vae.quant_conv.bias": "model-00002-of-00002.safetensors",
1158
+ "vae.quant_conv.weight": "model-00002-of-00002.safetensors"
1159
+ }
1160
+ }
lumina_ar-1_diffuser-6_step-600/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b504fc5019a99934092ef7e1da463ce95582276f89173453d52a27e805f00b3
3
+ size 9074944955
lumina_ar-1_diffuser-6_step-600/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17f7538fddc4f5a5e61f7a97ae5f6af654d623e3229add60e08446f310c78e98
3
+ size 14244
lumina_ar-1_diffuser-6_step-600/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df3cd0cb1c67a326b465332bde0ecdeac62626bea0e2ea96c60fa6d8786b9f65
3
+ size 1064
lumina_ar-1_diffuser-6_step-600/trainer_state.json ADDED
@@ -0,0 +1,4233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.0009366453111535724,
5
+ "eval_steps": 500,
6
+ "global_step": 600,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.5610755185892873e-06,
13
+ "grad_norm": 652.0,
14
+ "learning_rate": 0.0001,
15
+ "loss": 17.8237,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 3.1221510371785745e-06,
20
+ "grad_norm": 156.0,
21
+ "learning_rate": 0.0001,
22
+ "loss": 7.3554,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 4.683226555767862e-06,
27
+ "grad_norm": 79.5,
28
+ "learning_rate": 0.0001,
29
+ "loss": 3.2385,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 6.244302074357149e-06,
34
+ "grad_norm": 1752.0,
35
+ "learning_rate": 0.0001,
36
+ "loss": 3.6441,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 7.805377592946436e-06,
41
+ "grad_norm": 79.5,
42
+ "learning_rate": 0.0001,
43
+ "loss": 3.5411,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 9.366453111535724e-06,
48
+ "grad_norm": 7.5,
49
+ "learning_rate": 0.0001,
50
+ "loss": 1.7892,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 1.0927528630125011e-05,
55
+ "grad_norm": 12.3125,
56
+ "learning_rate": 0.0001,
57
+ "loss": 1.6314,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 1.2488604148714298e-05,
62
+ "grad_norm": 4.28125,
63
+ "learning_rate": 0.0001,
64
+ "loss": 1.4563,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 1.4049679667303585e-05,
69
+ "grad_norm": 4.0,
70
+ "learning_rate": 0.0001,
71
+ "loss": 1.3586,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 1.5610755185892873e-05,
76
+ "grad_norm": 3.890625,
77
+ "learning_rate": 0.0001,
78
+ "loss": 1.3606,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 1.717183070448216e-05,
83
+ "grad_norm": 1.7421875,
84
+ "learning_rate": 0.0001,
85
+ "loss": 1.2555,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 1.8732906223071447e-05,
90
+ "grad_norm": 1.265625,
91
+ "learning_rate": 0.0001,
92
+ "loss": 1.2124,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 2.0293981741660735e-05,
97
+ "grad_norm": 1.3828125,
98
+ "learning_rate": 0.0001,
99
+ "loss": 1.1521,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 2.1855057260250022e-05,
104
+ "grad_norm": 3.421875,
105
+ "learning_rate": 0.0001,
106
+ "loss": 1.1544,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 2.341613277883931e-05,
111
+ "grad_norm": 2.96875,
112
+ "learning_rate": 0.0001,
113
+ "loss": 1.0953,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 2.4977208297428596e-05,
118
+ "grad_norm": 1.5546875,
119
+ "learning_rate": 0.0001,
120
+ "loss": 1.0563,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 2.6538283816017884e-05,
125
+ "grad_norm": 1.3125,
126
+ "learning_rate": 0.0001,
127
+ "loss": 1.024,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 2.809935933460717e-05,
132
+ "grad_norm": 1.0234375,
133
+ "learning_rate": 0.0001,
134
+ "loss": 0.9929,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 2.9660434853196458e-05,
139
+ "grad_norm": 1.1796875,
140
+ "learning_rate": 0.0001,
141
+ "loss": 0.973,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 3.1221510371785745e-05,
146
+ "grad_norm": 1.046875,
147
+ "learning_rate": 0.0001,
148
+ "loss": 0.9622,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 3.278258589037503e-05,
153
+ "grad_norm": 2.078125,
154
+ "learning_rate": 0.0001,
155
+ "loss": 0.9719,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 3.434366140896432e-05,
160
+ "grad_norm": 1.6171875,
161
+ "learning_rate": 0.0001,
162
+ "loss": 0.9358,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 3.590473692755361e-05,
167
+ "grad_norm": 1.9140625,
168
+ "learning_rate": 0.0001,
169
+ "loss": 0.9714,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 3.7465812446142895e-05,
174
+ "grad_norm": 0.83984375,
175
+ "learning_rate": 0.0001,
176
+ "loss": 0.9272,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 3.902688796473218e-05,
181
+ "grad_norm": 0.89453125,
182
+ "learning_rate": 0.0001,
183
+ "loss": 0.904,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 4.058796348332147e-05,
188
+ "grad_norm": 1.75,
189
+ "learning_rate": 0.0001,
190
+ "loss": 0.911,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 4.2149039001910756e-05,
195
+ "grad_norm": 1.75,
196
+ "learning_rate": 0.0001,
197
+ "loss": 0.8867,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 4.3710114520500044e-05,
202
+ "grad_norm": 0.9140625,
203
+ "learning_rate": 0.0001,
204
+ "loss": 0.8738,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 4.527119003908933e-05,
209
+ "grad_norm": 1.4921875,
210
+ "learning_rate": 0.0001,
211
+ "loss": 0.8976,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 4.683226555767862e-05,
216
+ "grad_norm": 0.875,
217
+ "learning_rate": 0.0001,
218
+ "loss": 0.8614,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 4.8393341076267905e-05,
223
+ "grad_norm": 1.3125,
224
+ "learning_rate": 0.0001,
225
+ "loss": 0.8771,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 4.995441659485719e-05,
230
+ "grad_norm": 1.265625,
231
+ "learning_rate": 0.0001,
232
+ "loss": 0.8612,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 5.151549211344648e-05,
237
+ "grad_norm": 0.6484375,
238
+ "learning_rate": 0.0001,
239
+ "loss": 0.8565,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 5.307656763203577e-05,
244
+ "grad_norm": 1.25,
245
+ "learning_rate": 0.0001,
246
+ "loss": 0.8845,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 5.4637643150625055e-05,
251
+ "grad_norm": 1.40625,
252
+ "learning_rate": 0.0001,
253
+ "loss": 0.8489,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 5.619871866921434e-05,
258
+ "grad_norm": 0.65625,
259
+ "learning_rate": 0.0001,
260
+ "loss": 0.8561,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 5.775979418780363e-05,
265
+ "grad_norm": 0.6640625,
266
+ "learning_rate": 0.0001,
267
+ "loss": 0.8454,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 5.9320869706392916e-05,
272
+ "grad_norm": 0.671875,
273
+ "learning_rate": 0.0001,
274
+ "loss": 0.8283,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 6.0881945224982204e-05,
279
+ "grad_norm": 0.609375,
280
+ "learning_rate": 0.0001,
281
+ "loss": 0.8494,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 6.244302074357149e-05,
286
+ "grad_norm": 0.5078125,
287
+ "learning_rate": 0.0001,
288
+ "loss": 0.8355,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 6.400409626216078e-05,
293
+ "grad_norm": 0.984375,
294
+ "learning_rate": 0.0001,
295
+ "loss": 0.8322,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 6.556517178075007e-05,
300
+ "grad_norm": 0.515625,
301
+ "learning_rate": 0.0001,
302
+ "loss": 0.8384,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 6.712624729933935e-05,
307
+ "grad_norm": 0.53125,
308
+ "learning_rate": 0.0001,
309
+ "loss": 0.833,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 6.868732281792864e-05,
314
+ "grad_norm": 0.68359375,
315
+ "learning_rate": 0.0001,
316
+ "loss": 0.8259,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 7.024839833651793e-05,
321
+ "grad_norm": 0.88671875,
322
+ "learning_rate": 0.0001,
323
+ "loss": 0.8457,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 7.180947385510721e-05,
328
+ "grad_norm": 0.75390625,
329
+ "learning_rate": 0.0001,
330
+ "loss": 0.8193,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 7.33705493736965e-05,
335
+ "grad_norm": 0.59765625,
336
+ "learning_rate": 0.0001,
337
+ "loss": 0.8376,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 7.493162489228579e-05,
342
+ "grad_norm": 0.7265625,
343
+ "learning_rate": 0.0001,
344
+ "loss": 0.8279,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 7.649270041087508e-05,
349
+ "grad_norm": 0.48046875,
350
+ "learning_rate": 0.0001,
351
+ "loss": 0.8193,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 7.805377592946436e-05,
356
+ "grad_norm": 0.5390625,
357
+ "learning_rate": 0.0001,
358
+ "loss": 0.8055,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 7.961485144805365e-05,
363
+ "grad_norm": 0.55859375,
364
+ "learning_rate": 0.0001,
365
+ "loss": 0.8238,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 8.117592696664294e-05,
370
+ "grad_norm": 0.48828125,
371
+ "learning_rate": 0.0001,
372
+ "loss": 0.813,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 8.273700248523223e-05,
377
+ "grad_norm": 0.5703125,
378
+ "learning_rate": 0.0001,
379
+ "loss": 0.8004,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 8.429807800382151e-05,
384
+ "grad_norm": 0.470703125,
385
+ "learning_rate": 0.0001,
386
+ "loss": 0.8104,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 8.58591535224108e-05,
391
+ "grad_norm": 0.458984375,
392
+ "learning_rate": 0.0001,
393
+ "loss": 0.8296,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 8.742022904100009e-05,
398
+ "grad_norm": 0.55859375,
399
+ "learning_rate": 0.0001,
400
+ "loss": 0.7794,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 8.898130455958937e-05,
405
+ "grad_norm": 0.408203125,
406
+ "learning_rate": 0.0001,
407
+ "loss": 0.8021,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 9.054238007817866e-05,
412
+ "grad_norm": 0.625,
413
+ "learning_rate": 0.0001,
414
+ "loss": 0.7869,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 9.210345559676795e-05,
419
+ "grad_norm": 0.466796875,
420
+ "learning_rate": 0.0001,
421
+ "loss": 0.7933,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 9.366453111535724e-05,
426
+ "grad_norm": 0.52734375,
427
+ "learning_rate": 0.0001,
428
+ "loss": 0.8075,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 9.522560663394652e-05,
433
+ "grad_norm": 0.53125,
434
+ "learning_rate": 0.0001,
435
+ "loss": 0.7948,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 9.678668215253581e-05,
440
+ "grad_norm": 0.515625,
441
+ "learning_rate": 0.0001,
442
+ "loss": 0.795,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 9.83477576711251e-05,
447
+ "grad_norm": 0.61328125,
448
+ "learning_rate": 0.0001,
449
+ "loss": 0.7909,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 9.990883318971439e-05,
454
+ "grad_norm": 0.52734375,
455
+ "learning_rate": 0.0001,
456
+ "loss": 0.799,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.00010146990870830367,
461
+ "grad_norm": 0.490234375,
462
+ "learning_rate": 0.0001,
463
+ "loss": 0.7839,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.00010303098422689296,
468
+ "grad_norm": 0.58203125,
469
+ "learning_rate": 0.0001,
470
+ "loss": 0.807,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.00010459205974548225,
475
+ "grad_norm": 0.55078125,
476
+ "learning_rate": 0.0001,
477
+ "loss": 0.7862,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.00010615313526407153,
482
+ "grad_norm": 0.48828125,
483
+ "learning_rate": 0.0001,
484
+ "loss": 0.7887,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.00010771421078266082,
489
+ "grad_norm": 0.52734375,
490
+ "learning_rate": 0.0001,
491
+ "loss": 0.7948,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.00010927528630125011,
496
+ "grad_norm": 0.53125,
497
+ "learning_rate": 0.0001,
498
+ "loss": 0.7806,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.0001108363618198394,
503
+ "grad_norm": 0.7109375,
504
+ "learning_rate": 0.0001,
505
+ "loss": 0.7856,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.00011239743733842868,
510
+ "grad_norm": 0.466796875,
511
+ "learning_rate": 0.0001,
512
+ "loss": 0.7846,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.00011395851285701797,
517
+ "grad_norm": 0.66015625,
518
+ "learning_rate": 0.0001,
519
+ "loss": 0.7761,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.00011551958837560726,
524
+ "grad_norm": 0.640625,
525
+ "learning_rate": 0.0001,
526
+ "loss": 0.7666,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.00011708066389419655,
531
+ "grad_norm": 0.5234375,
532
+ "learning_rate": 0.0001,
533
+ "loss": 0.7741,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.00011864173941278583,
538
+ "grad_norm": 0.5,
539
+ "learning_rate": 0.0001,
540
+ "loss": 0.7836,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.00012020281493137512,
545
+ "grad_norm": 0.56640625,
546
+ "learning_rate": 0.0001,
547
+ "loss": 0.7545,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.00012176389044996441,
552
+ "grad_norm": 0.546875,
553
+ "learning_rate": 0.0001,
554
+ "loss": 0.7529,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.0001233249659685537,
559
+ "grad_norm": 0.7109375,
560
+ "learning_rate": 0.0001,
561
+ "loss": 0.7715,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.00012488604148714298,
566
+ "grad_norm": 0.6171875,
567
+ "learning_rate": 0.0001,
568
+ "loss": 0.7633,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.00012644711700573227,
573
+ "grad_norm": 0.625,
574
+ "learning_rate": 0.0001,
575
+ "loss": 0.7958,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.00012800819252432156,
580
+ "grad_norm": 0.890625,
581
+ "learning_rate": 0.0001,
582
+ "loss": 0.7495,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.00012956926804291084,
587
+ "grad_norm": 0.671875,
588
+ "learning_rate": 0.0001,
589
+ "loss": 0.7627,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.00013113034356150013,
594
+ "grad_norm": 0.6796875,
595
+ "learning_rate": 0.0001,
596
+ "loss": 0.7713,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.00013269141908008942,
601
+ "grad_norm": 0.46875,
602
+ "learning_rate": 0.0001,
603
+ "loss": 0.7516,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.0001342524945986787,
608
+ "grad_norm": 0.55859375,
609
+ "learning_rate": 0.0001,
610
+ "loss": 0.7383,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.000135813570117268,
615
+ "grad_norm": 0.703125,
616
+ "learning_rate": 0.0001,
617
+ "loss": 0.7607,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.00013737464563585728,
622
+ "grad_norm": 0.546875,
623
+ "learning_rate": 0.0001,
624
+ "loss": 0.7424,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.00013893572115444657,
629
+ "grad_norm": 0.50390625,
630
+ "learning_rate": 0.0001,
631
+ "loss": 0.7606,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.00014049679667303585,
636
+ "grad_norm": 0.95703125,
637
+ "learning_rate": 0.0001,
638
+ "loss": 0.7433,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.00014205787219162514,
643
+ "grad_norm": 0.515625,
644
+ "learning_rate": 0.0001,
645
+ "loss": 0.7596,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.00014361894771021443,
650
+ "grad_norm": 0.921875,
651
+ "learning_rate": 0.0001,
652
+ "loss": 0.7564,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.00014518002322880372,
657
+ "grad_norm": 0.890625,
658
+ "learning_rate": 0.0001,
659
+ "loss": 0.719,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.000146741098747393,
664
+ "grad_norm": 0.61328125,
665
+ "learning_rate": 0.0001,
666
+ "loss": 0.7605,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.0001483021742659823,
671
+ "grad_norm": 0.83984375,
672
+ "learning_rate": 0.0001,
673
+ "loss": 0.7443,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.00014986324978457158,
678
+ "grad_norm": 0.490234375,
679
+ "learning_rate": 0.0001,
680
+ "loss": 0.7638,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.00015142432530316087,
685
+ "grad_norm": 0.80078125,
686
+ "learning_rate": 0.0001,
687
+ "loss": 0.7333,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.00015298540082175015,
692
+ "grad_norm": 0.5390625,
693
+ "learning_rate": 0.0001,
694
+ "loss": 0.7301,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.00015454647634033944,
699
+ "grad_norm": 1.109375,
700
+ "learning_rate": 0.0001,
701
+ "loss": 0.7423,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.00015610755185892873,
706
+ "grad_norm": 0.5859375,
707
+ "learning_rate": 0.0001,
708
+ "loss": 0.7158,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.00015766862737751801,
713
+ "grad_norm": 0.75,
714
+ "learning_rate": 0.0001,
715
+ "loss": 0.7393,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.0001592297028961073,
720
+ "grad_norm": 0.984375,
721
+ "learning_rate": 0.0001,
722
+ "loss": 0.7435,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.0001607907784146966,
727
+ "grad_norm": 0.5078125,
728
+ "learning_rate": 0.0001,
729
+ "loss": 0.7405,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.00016235185393328588,
734
+ "grad_norm": 0.55859375,
735
+ "learning_rate": 0.0001,
736
+ "loss": 0.7235,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.00016391292945187516,
741
+ "grad_norm": 0.828125,
742
+ "learning_rate": 0.0001,
743
+ "loss": 0.7251,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.00016547400497046445,
748
+ "grad_norm": 0.7265625,
749
+ "learning_rate": 0.0001,
750
+ "loss": 0.7318,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.00016703508048905374,
755
+ "grad_norm": 0.53125,
756
+ "learning_rate": 0.0001,
757
+ "loss": 0.7183,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.00016859615600764303,
762
+ "grad_norm": 0.75,
763
+ "learning_rate": 0.0001,
764
+ "loss": 0.7225,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.0001701572315262323,
769
+ "grad_norm": 0.625,
770
+ "learning_rate": 0.0001,
771
+ "loss": 0.7148,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.0001717183070448216,
776
+ "grad_norm": 0.75390625,
777
+ "learning_rate": 0.0001,
778
+ "loss": 0.7114,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.0001732793825634109,
783
+ "grad_norm": 0.48828125,
784
+ "learning_rate": 0.0001,
785
+ "loss": 0.7155,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.00017484045808200017,
790
+ "grad_norm": 0.734375,
791
+ "learning_rate": 0.0001,
792
+ "loss": 0.7076,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.00017640153360058946,
797
+ "grad_norm": 0.7109375,
798
+ "learning_rate": 0.0001,
799
+ "loss": 0.7307,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.00017796260911917875,
804
+ "grad_norm": 1.015625,
805
+ "learning_rate": 0.0001,
806
+ "loss": 0.7068,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.00017952368463776804,
811
+ "grad_norm": 0.73828125,
812
+ "learning_rate": 0.0001,
813
+ "loss": 0.7009,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.00018108476015635732,
818
+ "grad_norm": 0.546875,
819
+ "learning_rate": 0.0001,
820
+ "loss": 0.7056,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.0001826458356749466,
825
+ "grad_norm": 0.6484375,
826
+ "learning_rate": 0.0001,
827
+ "loss": 0.7144,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.0001842069111935359,
832
+ "grad_norm": 0.6640625,
833
+ "learning_rate": 0.0001,
834
+ "loss": 0.7025,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.00018576798671212519,
839
+ "grad_norm": 0.5078125,
840
+ "learning_rate": 0.0001,
841
+ "loss": 0.7109,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.00018732906223071447,
846
+ "grad_norm": 0.5234375,
847
+ "learning_rate": 0.0001,
848
+ "loss": 0.689,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.00018889013774930376,
853
+ "grad_norm": 0.64453125,
854
+ "learning_rate": 0.0001,
855
+ "loss": 0.7034,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.00019045121326789305,
860
+ "grad_norm": 0.4609375,
861
+ "learning_rate": 0.0001,
862
+ "loss": 0.6927,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.00019201228878648233,
867
+ "grad_norm": 0.5,
868
+ "learning_rate": 0.0001,
869
+ "loss": 0.6859,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.00019357336430507162,
874
+ "grad_norm": 0.703125,
875
+ "learning_rate": 0.0001,
876
+ "loss": 0.6879,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.0001951344398236609,
881
+ "grad_norm": 0.5546875,
882
+ "learning_rate": 0.0001,
883
+ "loss": 0.6741,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.0001966955153422502,
888
+ "grad_norm": 0.5390625,
889
+ "learning_rate": 0.0001,
890
+ "loss": 0.6855,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.00019825659086083948,
895
+ "grad_norm": 0.8203125,
896
+ "learning_rate": 0.0001,
897
+ "loss": 0.7048,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.00019981766637942877,
902
+ "grad_norm": 0.515625,
903
+ "learning_rate": 0.0001,
904
+ "loss": 0.6746,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.00020137874189801806,
909
+ "grad_norm": 0.48046875,
910
+ "learning_rate": 0.0001,
911
+ "loss": 0.6686,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.00020293981741660735,
916
+ "grad_norm": 0.61328125,
917
+ "learning_rate": 0.0001,
918
+ "loss": 0.6845,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.00020450089293519663,
923
+ "grad_norm": 0.53125,
924
+ "learning_rate": 0.0001,
925
+ "loss": 0.6702,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.00020606196845378592,
930
+ "grad_norm": 0.474609375,
931
+ "learning_rate": 0.0001,
932
+ "loss": 0.6829,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.0002076230439723752,
937
+ "grad_norm": 0.58984375,
938
+ "learning_rate": 0.0001,
939
+ "loss": 0.6593,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.0002091841194909645,
944
+ "grad_norm": 0.7890625,
945
+ "learning_rate": 0.0001,
946
+ "loss": 0.6449,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.00021074519500955378,
951
+ "grad_norm": 0.59375,
952
+ "learning_rate": 0.0001,
953
+ "loss": 0.6762,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.00021230627052814307,
958
+ "grad_norm": 0.9609375,
959
+ "learning_rate": 0.0001,
960
+ "loss": 0.6824,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.00021386734604673236,
965
+ "grad_norm": 0.77734375,
966
+ "learning_rate": 0.0001,
967
+ "loss": 0.6695,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.00021542842156532164,
972
+ "grad_norm": 0.78515625,
973
+ "learning_rate": 0.0001,
974
+ "loss": 0.6556,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.00021698949708391093,
979
+ "grad_norm": 0.578125,
980
+ "learning_rate": 0.0001,
981
+ "loss": 0.6433,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.00021855057260250022,
986
+ "grad_norm": 0.9375,
987
+ "learning_rate": 0.0001,
988
+ "loss": 0.6604,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.0002201116481210895,
993
+ "grad_norm": 0.7265625,
994
+ "learning_rate": 0.0001,
995
+ "loss": 0.6473,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.0002216727236396788,
1000
+ "grad_norm": 0.734375,
1001
+ "learning_rate": 0.0001,
1002
+ "loss": 0.645,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.00022323379915826808,
1007
+ "grad_norm": 0.6328125,
1008
+ "learning_rate": 0.0001,
1009
+ "loss": 0.6545,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.00022479487467685737,
1014
+ "grad_norm": 0.73828125,
1015
+ "learning_rate": 0.0001,
1016
+ "loss": 0.6826,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.00022635595019544665,
1021
+ "grad_norm": 1.15625,
1022
+ "learning_rate": 0.0001,
1023
+ "loss": 0.6611,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.00022791702571403594,
1028
+ "grad_norm": 0.67578125,
1029
+ "learning_rate": 0.0001,
1030
+ "loss": 0.6664,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.00022947810123262523,
1035
+ "grad_norm": 0.75,
1036
+ "learning_rate": 0.0001,
1037
+ "loss": 0.631,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.00023103917675121452,
1042
+ "grad_norm": 0.66796875,
1043
+ "learning_rate": 0.0001,
1044
+ "loss": 0.6382,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.0002326002522698038,
1049
+ "grad_norm": 0.93359375,
1050
+ "learning_rate": 0.0001,
1051
+ "loss": 0.6682,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.0002341613277883931,
1056
+ "grad_norm": 0.8125,
1057
+ "learning_rate": 0.0001,
1058
+ "loss": 0.6844,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.00023572240330698238,
1063
+ "grad_norm": 0.8984375,
1064
+ "learning_rate": 0.0001,
1065
+ "loss": 0.6375,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.00023728347882557167,
1070
+ "grad_norm": 0.84375,
1071
+ "learning_rate": 0.0001,
1072
+ "loss": 0.6507,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.00023884455434416095,
1077
+ "grad_norm": 0.73828125,
1078
+ "learning_rate": 0.0001,
1079
+ "loss": 0.6393,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.00024040562986275024,
1084
+ "grad_norm": 0.69921875,
1085
+ "learning_rate": 0.0001,
1086
+ "loss": 0.6307,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.00024196670538133953,
1091
+ "grad_norm": 0.65234375,
1092
+ "learning_rate": 0.0001,
1093
+ "loss": 0.6362,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.00024352778089992881,
1098
+ "grad_norm": 1.25,
1099
+ "learning_rate": 0.0001,
1100
+ "loss": 0.638,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.0002450888564185181,
1105
+ "grad_norm": 0.6875,
1106
+ "learning_rate": 0.0001,
1107
+ "loss": 0.6266,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.0002466499319371074,
1112
+ "grad_norm": 0.93359375,
1113
+ "learning_rate": 0.0001,
1114
+ "loss": 0.6389,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.0002482110074556967,
1119
+ "grad_norm": 0.62109375,
1120
+ "learning_rate": 0.0001,
1121
+ "loss": 0.6297,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.00024977208297428596,
1126
+ "grad_norm": 0.80859375,
1127
+ "learning_rate": 0.0001,
1128
+ "loss": 0.6365,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.00025133315849287525,
1133
+ "grad_norm": 0.671875,
1134
+ "learning_rate": 0.0001,
1135
+ "loss": 0.6264,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.00025289423401146454,
1140
+ "grad_norm": 0.6640625,
1141
+ "learning_rate": 0.0001,
1142
+ "loss": 0.6152,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.0002544553095300538,
1147
+ "grad_norm": 0.8671875,
1148
+ "learning_rate": 0.0001,
1149
+ "loss": 0.638,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.0002560163850486431,
1154
+ "grad_norm": 0.7421875,
1155
+ "learning_rate": 0.0001,
1156
+ "loss": 0.6155,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.0002575774605672324,
1161
+ "grad_norm": 0.7578125,
1162
+ "learning_rate": 0.0001,
1163
+ "loss": 0.6181,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.0002591385360858217,
1168
+ "grad_norm": 0.5859375,
1169
+ "learning_rate": 0.0001,
1170
+ "loss": 0.6127,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.000260699611604411,
1175
+ "grad_norm": 0.90234375,
1176
+ "learning_rate": 0.0001,
1177
+ "loss": 0.5982,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.00026226068712300026,
1182
+ "grad_norm": 0.58203125,
1183
+ "learning_rate": 0.0001,
1184
+ "loss": 0.6014,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.00026382176264158955,
1189
+ "grad_norm": 0.6953125,
1190
+ "learning_rate": 0.0001,
1191
+ "loss": 0.6164,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.00026538283816017884,
1196
+ "grad_norm": 0.59765625,
1197
+ "learning_rate": 0.0001,
1198
+ "loss": 0.6291,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.0002669439136787681,
1203
+ "grad_norm": 0.71875,
1204
+ "learning_rate": 0.0001,
1205
+ "loss": 0.5953,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.0002685049891973574,
1210
+ "grad_norm": 0.55859375,
1211
+ "learning_rate": 0.0001,
1212
+ "loss": 0.6261,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.0002700660647159467,
1217
+ "grad_norm": 0.90625,
1218
+ "learning_rate": 0.0001,
1219
+ "loss": 0.6102,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.000271627140234536,
1224
+ "grad_norm": 0.671875,
1225
+ "learning_rate": 0.0001,
1226
+ "loss": 0.6176,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.0002731882157531253,
1231
+ "grad_norm": 0.81640625,
1232
+ "learning_rate": 0.0001,
1233
+ "loss": 0.5787,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.00027474929127171456,
1238
+ "grad_norm": 0.6640625,
1239
+ "learning_rate": 0.0001,
1240
+ "loss": 0.5691,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.00027631036679030385,
1245
+ "grad_norm": 0.58203125,
1246
+ "learning_rate": 0.0001,
1247
+ "loss": 0.6019,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.00027787144230889313,
1252
+ "grad_norm": 0.65234375,
1253
+ "learning_rate": 0.0001,
1254
+ "loss": 0.6116,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.0002794325178274824,
1259
+ "grad_norm": 0.66015625,
1260
+ "learning_rate": 0.0001,
1261
+ "loss": 0.596,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.0002809935933460717,
1266
+ "grad_norm": 0.53515625,
1267
+ "learning_rate": 0.0001,
1268
+ "loss": 0.5986,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.000282554668864661,
1273
+ "grad_norm": 0.6015625,
1274
+ "learning_rate": 0.0001,
1275
+ "loss": 0.5922,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.0002841157443832503,
1280
+ "grad_norm": 0.56640625,
1281
+ "learning_rate": 0.0001,
1282
+ "loss": 0.6004,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.00028567681990183957,
1287
+ "grad_norm": 0.578125,
1288
+ "learning_rate": 0.0001,
1289
+ "loss": 0.5841,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.00028723789542042886,
1294
+ "grad_norm": 0.55859375,
1295
+ "learning_rate": 0.0001,
1296
+ "loss": 0.5597,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.00028879897093901815,
1301
+ "grad_norm": 0.5859375,
1302
+ "learning_rate": 0.0001,
1303
+ "loss": 0.616,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.00029036004645760743,
1308
+ "grad_norm": 0.65625,
1309
+ "learning_rate": 0.0001,
1310
+ "loss": 0.5807,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.0002919211219761967,
1315
+ "grad_norm": 0.53515625,
1316
+ "learning_rate": 0.0001,
1317
+ "loss": 0.5785,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.000293482197494786,
1322
+ "grad_norm": 0.7734375,
1323
+ "learning_rate": 0.0001,
1324
+ "loss": 0.582,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.0002950432730133753,
1329
+ "grad_norm": 0.6484375,
1330
+ "learning_rate": 0.0001,
1331
+ "loss": 0.5859,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.0002966043485319646,
1336
+ "grad_norm": 0.58203125,
1337
+ "learning_rate": 0.0001,
1338
+ "loss": 0.5717,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.00029816542405055387,
1343
+ "grad_norm": 0.65625,
1344
+ "learning_rate": 0.0001,
1345
+ "loss": 0.5849,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.00029972649956914316,
1350
+ "grad_norm": 0.55859375,
1351
+ "learning_rate": 0.0001,
1352
+ "loss": 0.5675,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.00030128757508773244,
1357
+ "grad_norm": 0.79296875,
1358
+ "learning_rate": 0.0001,
1359
+ "loss": 0.5737,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.00030284865060632173,
1364
+ "grad_norm": 0.71875,
1365
+ "learning_rate": 0.0001,
1366
+ "loss": 0.555,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.000304409726124911,
1371
+ "grad_norm": 0.9609375,
1372
+ "learning_rate": 0.0001,
1373
+ "loss": 0.5688,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.0003059708016435003,
1378
+ "grad_norm": 0.5703125,
1379
+ "learning_rate": 0.0001,
1380
+ "loss": 0.5629,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.0003075318771620896,
1385
+ "grad_norm": 0.57421875,
1386
+ "learning_rate": 0.0001,
1387
+ "loss": 0.5428,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.0003090929526806789,
1392
+ "grad_norm": 0.90625,
1393
+ "learning_rate": 0.0001,
1394
+ "loss": 0.5851,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.00031065402819926817,
1399
+ "grad_norm": 1.0625,
1400
+ "learning_rate": 0.0001,
1401
+ "loss": 0.5811,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.00031221510371785745,
1406
+ "grad_norm": 0.69140625,
1407
+ "learning_rate": 0.0001,
1408
+ "loss": 0.5403,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.00031377617923644674,
1413
+ "grad_norm": 0.6484375,
1414
+ "learning_rate": 0.0001,
1415
+ "loss": 0.5662,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.00031533725475503603,
1420
+ "grad_norm": 0.71875,
1421
+ "learning_rate": 0.0001,
1422
+ "loss": 0.5489,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.0003168983302736253,
1427
+ "grad_norm": 0.609375,
1428
+ "learning_rate": 0.0001,
1429
+ "loss": 0.5545,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.0003184594057922146,
1434
+ "grad_norm": 1.0625,
1435
+ "learning_rate": 0.0001,
1436
+ "loss": 0.5925,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.0003200204813108039,
1441
+ "grad_norm": 0.6015625,
1442
+ "learning_rate": 0.0001,
1443
+ "loss": 0.5649,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.0003215815568293932,
1448
+ "grad_norm": 0.68359375,
1449
+ "learning_rate": 0.0001,
1450
+ "loss": 0.5581,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.00032314263234798247,
1455
+ "grad_norm": 0.52734375,
1456
+ "learning_rate": 0.0001,
1457
+ "loss": 0.5404,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.00032470370786657175,
1462
+ "grad_norm": 0.62890625,
1463
+ "learning_rate": 0.0001,
1464
+ "loss": 0.5604,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.00032626478338516104,
1469
+ "grad_norm": 0.59765625,
1470
+ "learning_rate": 0.0001,
1471
+ "loss": 0.5391,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.00032782585890375033,
1476
+ "grad_norm": 0.6640625,
1477
+ "learning_rate": 0.0001,
1478
+ "loss": 0.5675,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.0003293869344223396,
1483
+ "grad_norm": 0.60546875,
1484
+ "learning_rate": 0.0001,
1485
+ "loss": 0.5379,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.0003309480099409289,
1490
+ "grad_norm": 0.66015625,
1491
+ "learning_rate": 0.0001,
1492
+ "loss": 0.5419,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.0003325090854595182,
1497
+ "grad_norm": 0.7109375,
1498
+ "learning_rate": 0.0001,
1499
+ "loss": 0.5649,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.0003340701609781075,
1504
+ "grad_norm": 0.7421875,
1505
+ "learning_rate": 0.0001,
1506
+ "loss": 0.5778,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.00033563123649669676,
1511
+ "grad_norm": 1.0546875,
1512
+ "learning_rate": 0.0001,
1513
+ "loss": 0.5464,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.00033719231201528605,
1518
+ "grad_norm": 0.66015625,
1519
+ "learning_rate": 0.0001,
1520
+ "loss": 0.5098,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.00033875338753387534,
1525
+ "grad_norm": 0.80078125,
1526
+ "learning_rate": 0.0001,
1527
+ "loss": 0.539,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.0003403144630524646,
1532
+ "grad_norm": 0.61328125,
1533
+ "learning_rate": 0.0001,
1534
+ "loss": 0.563,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.0003418755385710539,
1539
+ "grad_norm": 0.69921875,
1540
+ "learning_rate": 0.0001,
1541
+ "loss": 0.5331,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.0003434366140896432,
1546
+ "grad_norm": 0.69140625,
1547
+ "learning_rate": 0.0001,
1548
+ "loss": 0.5355,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.0003449976896082325,
1553
+ "grad_norm": 0.71875,
1554
+ "learning_rate": 0.0001,
1555
+ "loss": 0.5245,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.0003465587651268218,
1560
+ "grad_norm": 0.86328125,
1561
+ "learning_rate": 0.0001,
1562
+ "loss": 0.5509,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.00034811984064541106,
1567
+ "grad_norm": 0.796875,
1568
+ "learning_rate": 0.0001,
1569
+ "loss": 0.5217,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.00034968091616400035,
1574
+ "grad_norm": 0.765625,
1575
+ "learning_rate": 0.0001,
1576
+ "loss": 0.5188,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.00035124199168258964,
1581
+ "grad_norm": 0.75390625,
1582
+ "learning_rate": 0.0001,
1583
+ "loss": 0.5138,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.0003528030672011789,
1588
+ "grad_norm": 0.703125,
1589
+ "learning_rate": 0.0001,
1590
+ "loss": 0.5248,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.0003543641427197682,
1595
+ "grad_norm": 0.64453125,
1596
+ "learning_rate": 0.0001,
1597
+ "loss": 0.5221,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.0003559252182383575,
1602
+ "grad_norm": 0.6328125,
1603
+ "learning_rate": 0.0001,
1604
+ "loss": 0.5082,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.0003574862937569468,
1609
+ "grad_norm": 0.6015625,
1610
+ "learning_rate": 0.0001,
1611
+ "loss": 0.5131,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.0003590473692755361,
1616
+ "grad_norm": 0.64453125,
1617
+ "learning_rate": 0.0001,
1618
+ "loss": 0.5132,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.00036060844479412536,
1623
+ "grad_norm": 0.9453125,
1624
+ "learning_rate": 0.0001,
1625
+ "loss": 0.5551,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.00036216952031271465,
1630
+ "grad_norm": 0.83984375,
1631
+ "learning_rate": 0.0001,
1632
+ "loss": 0.5206,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.00036373059583130393,
1637
+ "grad_norm": 0.9375,
1638
+ "learning_rate": 0.0001,
1639
+ "loss": 0.5227,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.0003652916713498932,
1644
+ "grad_norm": 0.74609375,
1645
+ "learning_rate": 0.0001,
1646
+ "loss": 0.5134,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.0003668527468684825,
1651
+ "grad_norm": 0.62890625,
1652
+ "learning_rate": 0.0001,
1653
+ "loss": 0.5405,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.0003684138223870718,
1658
+ "grad_norm": 0.734375,
1659
+ "learning_rate": 0.0001,
1660
+ "loss": 0.5225,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.0003699748979056611,
1665
+ "grad_norm": 0.7578125,
1666
+ "learning_rate": 0.0001,
1667
+ "loss": 0.5107,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.00037153597342425037,
1672
+ "grad_norm": 0.72265625,
1673
+ "learning_rate": 0.0001,
1674
+ "loss": 0.5177,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.00037309704894283966,
1679
+ "grad_norm": 0.8828125,
1680
+ "learning_rate": 0.0001,
1681
+ "loss": 0.5168,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.00037465812446142895,
1686
+ "grad_norm": 0.6328125,
1687
+ "learning_rate": 0.0001,
1688
+ "loss": 0.5014,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.00037621919998001823,
1693
+ "grad_norm": 0.7421875,
1694
+ "learning_rate": 0.0001,
1695
+ "loss": 0.5336,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.0003777802754986075,
1700
+ "grad_norm": 1.046875,
1701
+ "learning_rate": 0.0001,
1702
+ "loss": 0.505,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.0003793413510171968,
1707
+ "grad_norm": 0.640625,
1708
+ "learning_rate": 0.0001,
1709
+ "loss": 0.5012,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.0003809024265357861,
1714
+ "grad_norm": 0.8046875,
1715
+ "learning_rate": 0.0001,
1716
+ "loss": 0.5123,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.0003824635020543754,
1721
+ "grad_norm": 0.88671875,
1722
+ "learning_rate": 0.0001,
1723
+ "loss": 0.501,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.00038402457757296467,
1728
+ "grad_norm": 0.796875,
1729
+ "learning_rate": 0.0001,
1730
+ "loss": 0.5132,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.00038558565309155396,
1735
+ "grad_norm": 0.77734375,
1736
+ "learning_rate": 0.0001,
1737
+ "loss": 0.5311,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.00038714672861014324,
1742
+ "grad_norm": 0.75,
1743
+ "learning_rate": 0.0001,
1744
+ "loss": 0.4914,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.00038870780412873253,
1749
+ "grad_norm": 0.57421875,
1750
+ "learning_rate": 0.0001,
1751
+ "loss": 0.5107,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.0003902688796473218,
1756
+ "grad_norm": 0.71484375,
1757
+ "learning_rate": 0.0001,
1758
+ "loss": 0.507,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.0003918299551659111,
1763
+ "grad_norm": 0.671875,
1764
+ "learning_rate": 0.0001,
1765
+ "loss": 0.533,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.0003933910306845004,
1770
+ "grad_norm": 0.95703125,
1771
+ "learning_rate": 0.0001,
1772
+ "loss": 0.4762,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.0003949521062030897,
1777
+ "grad_norm": 0.52734375,
1778
+ "learning_rate": 0.0001,
1779
+ "loss": 0.5045,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.00039651318172167897,
1784
+ "grad_norm": 0.765625,
1785
+ "learning_rate": 0.0001,
1786
+ "loss": 0.4907,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.00039807425724026825,
1791
+ "grad_norm": 0.59765625,
1792
+ "learning_rate": 0.0001,
1793
+ "loss": 0.4928,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.00039963533275885754,
1798
+ "grad_norm": 0.59765625,
1799
+ "learning_rate": 0.0001,
1800
+ "loss": 0.5093,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.00040119640827744683,
1805
+ "grad_norm": 0.57421875,
1806
+ "learning_rate": 0.0001,
1807
+ "loss": 0.4827,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.0004027574837960361,
1812
+ "grad_norm": 0.65625,
1813
+ "learning_rate": 0.0001,
1814
+ "loss": 0.463,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.0004043185593146254,
1819
+ "grad_norm": 0.5703125,
1820
+ "learning_rate": 0.0001,
1821
+ "loss": 0.5023,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.0004058796348332147,
1826
+ "grad_norm": 0.52734375,
1827
+ "learning_rate": 0.0001,
1828
+ "loss": 0.506,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.000407440710351804,
1833
+ "grad_norm": 0.9296875,
1834
+ "learning_rate": 0.0001,
1835
+ "loss": 0.486,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.00040900178587039327,
1840
+ "grad_norm": 0.65625,
1841
+ "learning_rate": 0.0001,
1842
+ "loss": 0.4802,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.00041056286138898255,
1847
+ "grad_norm": 0.75390625,
1848
+ "learning_rate": 0.0001,
1849
+ "loss": 0.4975,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.00041212393690757184,
1854
+ "grad_norm": 0.84765625,
1855
+ "learning_rate": 0.0001,
1856
+ "loss": 0.4933,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.00041368501242616113,
1861
+ "grad_norm": 0.5625,
1862
+ "learning_rate": 0.0001,
1863
+ "loss": 0.5015,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.0004152460879447504,
1868
+ "grad_norm": 0.9375,
1869
+ "learning_rate": 0.0001,
1870
+ "loss": 0.4982,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.0004168071634633397,
1875
+ "grad_norm": 0.8515625,
1876
+ "learning_rate": 0.0001,
1877
+ "loss": 0.4688,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.000418368238981929,
1882
+ "grad_norm": 0.73828125,
1883
+ "learning_rate": 0.0001,
1884
+ "loss": 0.4791,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.0004199293145005183,
1889
+ "grad_norm": 0.75390625,
1890
+ "learning_rate": 0.0001,
1891
+ "loss": 0.4819,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.00042149039001910756,
1896
+ "grad_norm": 0.7421875,
1897
+ "learning_rate": 0.0001,
1898
+ "loss": 0.4579,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.00042305146553769685,
1903
+ "grad_norm": 0.6484375,
1904
+ "learning_rate": 0.0001,
1905
+ "loss": 0.477,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.00042461254105628614,
1910
+ "grad_norm": 0.77734375,
1911
+ "learning_rate": 0.0001,
1912
+ "loss": 0.5063,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.0004261736165748754,
1917
+ "grad_norm": 0.65625,
1918
+ "learning_rate": 0.0001,
1919
+ "loss": 0.4601,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.0004277346920934647,
1924
+ "grad_norm": 0.71875,
1925
+ "learning_rate": 0.0001,
1926
+ "loss": 0.4686,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.000429295767612054,
1931
+ "grad_norm": 0.5859375,
1932
+ "learning_rate": 0.0001,
1933
+ "loss": 0.5095,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.0004308568431306433,
1938
+ "grad_norm": 0.59375,
1939
+ "learning_rate": 0.0001,
1940
+ "loss": 0.4503,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.0004324179186492326,
1945
+ "grad_norm": 0.5390625,
1946
+ "learning_rate": 0.0001,
1947
+ "loss": 0.443,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.00043397899416782186,
1952
+ "grad_norm": 0.62109375,
1953
+ "learning_rate": 0.0001,
1954
+ "loss": 0.4746,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.00043554006968641115,
1959
+ "grad_norm": 0.62109375,
1960
+ "learning_rate": 0.0001,
1961
+ "loss": 0.4574,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.00043710114520500044,
1966
+ "grad_norm": 0.62109375,
1967
+ "learning_rate": 0.0001,
1968
+ "loss": 0.4852,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.0004386622207235897,
1973
+ "grad_norm": 0.66015625,
1974
+ "learning_rate": 0.0001,
1975
+ "loss": 0.4657,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.000440223296242179,
1980
+ "grad_norm": 0.59375,
1981
+ "learning_rate": 0.0001,
1982
+ "loss": 0.4734,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.0004417843717607683,
1987
+ "grad_norm": 0.75390625,
1988
+ "learning_rate": 0.0001,
1989
+ "loss": 0.4555,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.0004433454472793576,
1994
+ "grad_norm": 0.625,
1995
+ "learning_rate": 0.0001,
1996
+ "loss": 0.4654,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.0004449065227979469,
2001
+ "grad_norm": 0.60546875,
2002
+ "learning_rate": 0.0001,
2003
+ "loss": 0.4578,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.00044646759831653616,
2008
+ "grad_norm": 0.56640625,
2009
+ "learning_rate": 0.0001,
2010
+ "loss": 0.4583,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.00044802867383512545,
2015
+ "grad_norm": 0.671875,
2016
+ "learning_rate": 0.0001,
2017
+ "loss": 0.456,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.00044958974935371473,
2022
+ "grad_norm": 0.53125,
2023
+ "learning_rate": 0.0001,
2024
+ "loss": 0.4615,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.000451150824872304,
2029
+ "grad_norm": 0.67578125,
2030
+ "learning_rate": 0.0001,
2031
+ "loss": 0.4712,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.0004527119003908933,
2036
+ "grad_norm": 0.65625,
2037
+ "learning_rate": 0.0001,
2038
+ "loss": 0.4547,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.0004542729759094826,
2043
+ "grad_norm": 0.6875,
2044
+ "learning_rate": 0.0001,
2045
+ "loss": 0.4584,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.0004558340514280719,
2050
+ "grad_norm": 0.7109375,
2051
+ "learning_rate": 0.0001,
2052
+ "loss": 0.4795,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.00045739512694666117,
2057
+ "grad_norm": 0.85546875,
2058
+ "learning_rate": 0.0001,
2059
+ "loss": 0.4393,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.00045895620246525046,
2064
+ "grad_norm": 0.5859375,
2065
+ "learning_rate": 0.0001,
2066
+ "loss": 0.4671,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.00046051727798383975,
2071
+ "grad_norm": 0.7265625,
2072
+ "learning_rate": 0.0001,
2073
+ "loss": 0.4849,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.00046207835350242903,
2078
+ "grad_norm": 0.78515625,
2079
+ "learning_rate": 0.0001,
2080
+ "loss": 0.4709,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.0004636394290210183,
2085
+ "grad_norm": 0.73828125,
2086
+ "learning_rate": 0.0001,
2087
+ "loss": 0.4423,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.0004652005045396076,
2092
+ "grad_norm": 0.5859375,
2093
+ "learning_rate": 0.0001,
2094
+ "loss": 0.4377,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.0004667615800581969,
2099
+ "grad_norm": 0.80859375,
2100
+ "learning_rate": 0.0001,
2101
+ "loss": 0.4701,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.0004683226555767862,
2106
+ "grad_norm": 0.65234375,
2107
+ "learning_rate": 0.0001,
2108
+ "loss": 0.4898,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.00046988373109537547,
2113
+ "grad_norm": 0.9609375,
2114
+ "learning_rate": 0.0001,
2115
+ "loss": 0.4765,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.00047144480661396476,
2120
+ "grad_norm": 1.09375,
2121
+ "learning_rate": 0.0001,
2122
+ "loss": 0.4428,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.00047300588213255404,
2127
+ "grad_norm": 1.6875,
2128
+ "learning_rate": 0.0001,
2129
+ "loss": 0.4729,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.00047456695765114333,
2134
+ "grad_norm": 1.234375,
2135
+ "learning_rate": 0.0001,
2136
+ "loss": 0.4545,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.0004761280331697326,
2141
+ "grad_norm": 1.046875,
2142
+ "learning_rate": 0.0001,
2143
+ "loss": 0.4885,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.0004776891086883219,
2148
+ "grad_norm": 1.0625,
2149
+ "learning_rate": 0.0001,
2150
+ "loss": 0.4445,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.0004792501842069112,
2155
+ "grad_norm": 0.94140625,
2156
+ "learning_rate": 0.0001,
2157
+ "loss": 0.4656,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.0004808112597255005,
2162
+ "grad_norm": 1.09375,
2163
+ "learning_rate": 0.0001,
2164
+ "loss": 0.45,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.00048237233524408977,
2169
+ "grad_norm": 0.859375,
2170
+ "learning_rate": 0.0001,
2171
+ "loss": 0.4423,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.00048393341076267905,
2176
+ "grad_norm": 0.90234375,
2177
+ "learning_rate": 0.0001,
2178
+ "loss": 0.4439,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.00048549448628126834,
2183
+ "grad_norm": 1.2109375,
2184
+ "learning_rate": 0.0001,
2185
+ "loss": 0.4512,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.00048705556179985763,
2190
+ "grad_norm": 1.125,
2191
+ "learning_rate": 0.0001,
2192
+ "loss": 0.4412,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.0004886166373184469,
2197
+ "grad_norm": 1.34375,
2198
+ "learning_rate": 0.0001,
2199
+ "loss": 0.4502,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.0004901777128370362,
2204
+ "grad_norm": 1.1171875,
2205
+ "learning_rate": 0.0001,
2206
+ "loss": 0.4405,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.0004917387883556255,
2211
+ "grad_norm": 0.8359375,
2212
+ "learning_rate": 0.0001,
2213
+ "loss": 0.4358,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.0004932998638742148,
2218
+ "grad_norm": 0.91015625,
2219
+ "learning_rate": 0.0001,
2220
+ "loss": 0.4417,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.0004948609393928041,
2225
+ "grad_norm": 0.640625,
2226
+ "learning_rate": 0.0001,
2227
+ "loss": 0.4419,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.0004964220149113934,
2232
+ "grad_norm": 0.8203125,
2233
+ "learning_rate": 0.0001,
2234
+ "loss": 0.4209,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.0004979830904299826,
2239
+ "grad_norm": 0.7734375,
2240
+ "learning_rate": 0.0001,
2241
+ "loss": 0.4525,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.0004995441659485719,
2246
+ "grad_norm": 0.71484375,
2247
+ "learning_rate": 0.0001,
2248
+ "loss": 0.4256,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.0005011052414671612,
2253
+ "grad_norm": 0.71875,
2254
+ "learning_rate": 0.0001,
2255
+ "loss": 0.4323,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.0005026663169857505,
2260
+ "grad_norm": 0.62890625,
2261
+ "learning_rate": 0.0001,
2262
+ "loss": 0.4182,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.0005042273925043398,
2267
+ "grad_norm": 1.015625,
2268
+ "learning_rate": 0.0001,
2269
+ "loss": 0.4241,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.0005057884680229291,
2274
+ "grad_norm": 0.5859375,
2275
+ "learning_rate": 0.0001,
2276
+ "loss": 0.4233,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.0005073495435415184,
2281
+ "grad_norm": 0.69140625,
2282
+ "learning_rate": 0.0001,
2283
+ "loss": 0.4484,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.0005089106190601077,
2288
+ "grad_norm": 0.6328125,
2289
+ "learning_rate": 0.0001,
2290
+ "loss": 0.4717,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.0005104716945786969,
2295
+ "grad_norm": 0.72265625,
2296
+ "learning_rate": 0.0001,
2297
+ "loss": 0.4278,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.0005120327700972862,
2302
+ "grad_norm": 0.671875,
2303
+ "learning_rate": 0.0001,
2304
+ "loss": 0.4443,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.0005135938456158755,
2309
+ "grad_norm": 0.7890625,
2310
+ "learning_rate": 0.0001,
2311
+ "loss": 0.4702,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.0005151549211344648,
2316
+ "grad_norm": 0.64453125,
2317
+ "learning_rate": 0.0001,
2318
+ "loss": 0.4578,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.0005167159966530541,
2323
+ "grad_norm": 0.7890625,
2324
+ "learning_rate": 0.0001,
2325
+ "loss": 0.4318,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.0005182770721716434,
2330
+ "grad_norm": 0.734375,
2331
+ "learning_rate": 0.0001,
2332
+ "loss": 0.4198,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.0005198381476902327,
2337
+ "grad_norm": 0.62890625,
2338
+ "learning_rate": 0.0001,
2339
+ "loss": 0.4155,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.000521399223208822,
2344
+ "grad_norm": 0.6328125,
2345
+ "learning_rate": 0.0001,
2346
+ "loss": 0.4031,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.0005229602987274112,
2351
+ "grad_norm": 0.796875,
2352
+ "learning_rate": 0.0001,
2353
+ "loss": 0.4424,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.0005245213742460005,
2358
+ "grad_norm": 0.61328125,
2359
+ "learning_rate": 0.0001,
2360
+ "loss": 0.418,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.0005260824497645898,
2365
+ "grad_norm": 0.80078125,
2366
+ "learning_rate": 0.0001,
2367
+ "loss": 0.4132,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.0005276435252831791,
2372
+ "grad_norm": 0.55859375,
2373
+ "learning_rate": 0.0001,
2374
+ "loss": 0.3961,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.0005292046008017684,
2379
+ "grad_norm": 0.65625,
2380
+ "learning_rate": 0.0001,
2381
+ "loss": 0.4217,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.0005307656763203577,
2386
+ "grad_norm": 0.6875,
2387
+ "learning_rate": 0.0001,
2388
+ "loss": 0.4097,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.000532326751838947,
2393
+ "grad_norm": 0.6875,
2394
+ "learning_rate": 0.0001,
2395
+ "loss": 0.4072,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.0005338878273575362,
2400
+ "grad_norm": 2.0,
2401
+ "learning_rate": 0.0001,
2402
+ "loss": 0.4652,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 0.0005354489028761255,
2407
+ "grad_norm": 1.515625,
2408
+ "learning_rate": 0.0001,
2409
+ "loss": 0.4493,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 0.0005370099783947148,
2414
+ "grad_norm": 1.5,
2415
+ "learning_rate": 0.0001,
2416
+ "loss": 0.4394,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 0.0005385710539133041,
2421
+ "grad_norm": 1.75,
2422
+ "learning_rate": 0.0001,
2423
+ "loss": 0.4023,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 0.0005401321294318934,
2428
+ "grad_norm": 0.765625,
2429
+ "learning_rate": 0.0001,
2430
+ "loss": 0.4229,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 0.0005416932049504827,
2435
+ "grad_norm": 1.015625,
2436
+ "learning_rate": 0.0001,
2437
+ "loss": 0.412,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 0.000543254280469072,
2442
+ "grad_norm": 1.2109375,
2443
+ "learning_rate": 0.0001,
2444
+ "loss": 0.3834,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 0.0005448153559876613,
2449
+ "grad_norm": 0.921875,
2450
+ "learning_rate": 0.0001,
2451
+ "loss": 0.4088,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 0.0005463764315062505,
2456
+ "grad_norm": 1.59375,
2457
+ "learning_rate": 0.0001,
2458
+ "loss": 0.4056,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 0.0005479375070248398,
2463
+ "grad_norm": 1.828125,
2464
+ "learning_rate": 0.0001,
2465
+ "loss": 0.3936,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 0.0005494985825434291,
2470
+ "grad_norm": 2.65625,
2471
+ "learning_rate": 0.0001,
2472
+ "loss": 0.4552,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 0.0005510596580620184,
2477
+ "grad_norm": 1.34375,
2478
+ "learning_rate": 0.0001,
2479
+ "loss": 0.3997,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 0.0005526207335806077,
2484
+ "grad_norm": 1.6171875,
2485
+ "learning_rate": 0.0001,
2486
+ "loss": 0.3907,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 0.000554181809099197,
2491
+ "grad_norm": 1.234375,
2492
+ "learning_rate": 0.0001,
2493
+ "loss": 0.4121,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 0.0005557428846177863,
2498
+ "grad_norm": 0.921875,
2499
+ "learning_rate": 0.0001,
2500
+ "loss": 0.4053,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 0.0005573039601363756,
2505
+ "grad_norm": 1.5,
2506
+ "learning_rate": 0.0001,
2507
+ "loss": 0.3943,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 0.0005588650356549648,
2512
+ "grad_norm": 2.046875,
2513
+ "learning_rate": 0.0001,
2514
+ "loss": 0.4542,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 0.0005604261111735541,
2519
+ "grad_norm": 0.8203125,
2520
+ "learning_rate": 0.0001,
2521
+ "loss": 0.4462,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 0.0005619871866921434,
2526
+ "grad_norm": 3.28125,
2527
+ "learning_rate": 0.0001,
2528
+ "loss": 0.3853,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 0.0005635482622107327,
2533
+ "grad_norm": 2.359375,
2534
+ "learning_rate": 0.0001,
2535
+ "loss": 0.4277,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 0.000565109337729322,
2540
+ "grad_norm": 1.90625,
2541
+ "learning_rate": 0.0001,
2542
+ "loss": 0.4082,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 0.0005666704132479113,
2547
+ "grad_norm": 0.77734375,
2548
+ "learning_rate": 0.0001,
2549
+ "loss": 0.4095,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 0.0005682314887665006,
2554
+ "grad_norm": 1.4921875,
2555
+ "learning_rate": 0.0001,
2556
+ "loss": 0.3889,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 0.0005697925642850899,
2561
+ "grad_norm": 0.8828125,
2562
+ "learning_rate": 0.0001,
2563
+ "loss": 0.4383,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 0.0005713536398036791,
2568
+ "grad_norm": 1.03125,
2569
+ "learning_rate": 0.0001,
2570
+ "loss": 0.4004,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 0.0005729147153222684,
2575
+ "grad_norm": 1.0390625,
2576
+ "learning_rate": 0.0001,
2577
+ "loss": 0.3863,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 0.0005744757908408577,
2582
+ "grad_norm": 1.1796875,
2583
+ "learning_rate": 0.0001,
2584
+ "loss": 0.3852,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 0.000576036866359447,
2589
+ "grad_norm": 1.4375,
2590
+ "learning_rate": 0.0001,
2591
+ "loss": 0.4347,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 0.0005775979418780363,
2596
+ "grad_norm": 1.265625,
2597
+ "learning_rate": 0.0001,
2598
+ "loss": 0.3822,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 0.0005791590173966256,
2603
+ "grad_norm": 1.140625,
2604
+ "learning_rate": 0.0001,
2605
+ "loss": 0.3902,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 0.0005807200929152149,
2610
+ "grad_norm": 0.62109375,
2611
+ "learning_rate": 0.0001,
2612
+ "loss": 0.3886,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 0.0005822811684338042,
2617
+ "grad_norm": 0.9140625,
2618
+ "learning_rate": 0.0001,
2619
+ "loss": 0.3961,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 0.0005838422439523934,
2624
+ "grad_norm": 0.7578125,
2625
+ "learning_rate": 0.0001,
2626
+ "loss": 0.3836,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 0.0005854033194709827,
2631
+ "grad_norm": 0.625,
2632
+ "learning_rate": 0.0001,
2633
+ "loss": 0.3907,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 0.000586964394989572,
2638
+ "grad_norm": 0.73828125,
2639
+ "learning_rate": 0.0001,
2640
+ "loss": 0.3853,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 0.0005885254705081613,
2645
+ "grad_norm": 0.76171875,
2646
+ "learning_rate": 0.0001,
2647
+ "loss": 0.3883,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 0.0005900865460267506,
2652
+ "grad_norm": 0.546875,
2653
+ "learning_rate": 0.0001,
2654
+ "loss": 0.3813,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 0.0005916476215453399,
2659
+ "grad_norm": 0.69921875,
2660
+ "learning_rate": 0.0001,
2661
+ "loss": 0.3859,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 0.0005932086970639292,
2666
+ "grad_norm": 0.63671875,
2667
+ "learning_rate": 0.0001,
2668
+ "loss": 0.3773,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 0.0005947697725825185,
2673
+ "grad_norm": 0.58984375,
2674
+ "learning_rate": 0.0001,
2675
+ "loss": 0.3782,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 0.0005963308481011077,
2680
+ "grad_norm": 0.875,
2681
+ "learning_rate": 0.0001,
2682
+ "loss": 0.4015,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 0.000597891923619697,
2687
+ "grad_norm": 0.7890625,
2688
+ "learning_rate": 0.0001,
2689
+ "loss": 0.3989,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 0.0005994529991382863,
2694
+ "grad_norm": 0.8046875,
2695
+ "learning_rate": 0.0001,
2696
+ "loss": 0.3764,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 0.0006010140746568756,
2701
+ "grad_norm": 0.6484375,
2702
+ "learning_rate": 0.0001,
2703
+ "loss": 0.3725,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 0.0006025751501754649,
2708
+ "grad_norm": 0.734375,
2709
+ "learning_rate": 0.0001,
2710
+ "loss": 0.3793,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 0.0006041362256940542,
2715
+ "grad_norm": 0.6640625,
2716
+ "learning_rate": 0.0001,
2717
+ "loss": 0.3745,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 0.0006056973012126435,
2722
+ "grad_norm": 0.75,
2723
+ "learning_rate": 0.0001,
2724
+ "loss": 0.4247,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 0.0006072583767312327,
2729
+ "grad_norm": 0.66015625,
2730
+ "learning_rate": 0.0001,
2731
+ "loss": 0.3795,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 0.000608819452249822,
2736
+ "grad_norm": 0.58203125,
2737
+ "learning_rate": 0.0001,
2738
+ "loss": 0.3755,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 0.0006103805277684113,
2743
+ "grad_norm": 0.84375,
2744
+ "learning_rate": 0.0001,
2745
+ "loss": 0.3804,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 0.0006119416032870006,
2750
+ "grad_norm": 0.5859375,
2751
+ "learning_rate": 0.0001,
2752
+ "loss": 0.3776,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 0.0006135026788055899,
2757
+ "grad_norm": 0.66015625,
2758
+ "learning_rate": 0.0001,
2759
+ "loss": 0.3772,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 0.0006150637543241792,
2764
+ "grad_norm": 0.62109375,
2765
+ "learning_rate": 0.0001,
2766
+ "loss": 0.3694,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 0.0006166248298427685,
2771
+ "grad_norm": 0.73046875,
2772
+ "learning_rate": 0.0001,
2773
+ "loss": 0.3755,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 0.0006181859053613578,
2778
+ "grad_norm": 0.5703125,
2779
+ "learning_rate": 0.0001,
2780
+ "loss": 0.3689,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 0.000619746980879947,
2785
+ "grad_norm": 0.578125,
2786
+ "learning_rate": 0.0001,
2787
+ "loss": 0.3794,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 0.0006213080563985363,
2792
+ "grad_norm": 0.625,
2793
+ "learning_rate": 0.0001,
2794
+ "loss": 0.3553,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 0.0006228691319171256,
2799
+ "grad_norm": 0.51953125,
2800
+ "learning_rate": 0.0001,
2801
+ "loss": 0.3642,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 0.0006244302074357149,
2806
+ "grad_norm": 0.53125,
2807
+ "learning_rate": 0.0001,
2808
+ "loss": 0.3746,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 0.0006259912829543042,
2813
+ "grad_norm": 0.55859375,
2814
+ "learning_rate": 0.0001,
2815
+ "loss": 0.3814,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 0.0006275523584728935,
2820
+ "grad_norm": 0.53515625,
2821
+ "learning_rate": 0.0001,
2822
+ "loss": 0.3724,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 0.0006291134339914828,
2827
+ "grad_norm": 0.5859375,
2828
+ "learning_rate": 0.0001,
2829
+ "loss": 0.3782,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 0.0006306745095100721,
2834
+ "grad_norm": 0.55078125,
2835
+ "learning_rate": 0.0001,
2836
+ "loss": 0.3566,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 0.0006322355850286613,
2841
+ "grad_norm": 0.5859375,
2842
+ "learning_rate": 0.0001,
2843
+ "loss": 0.3592,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 0.0006337966605472506,
2848
+ "grad_norm": 0.7421875,
2849
+ "learning_rate": 0.0001,
2850
+ "loss": 0.373,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 0.0006353577360658399,
2855
+ "grad_norm": 0.62109375,
2856
+ "learning_rate": 0.0001,
2857
+ "loss": 0.355,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 0.0006369188115844292,
2862
+ "grad_norm": 0.66015625,
2863
+ "learning_rate": 0.0001,
2864
+ "loss": 0.3619,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 0.0006384798871030185,
2869
+ "grad_norm": 0.9609375,
2870
+ "learning_rate": 0.0001,
2871
+ "loss": 0.4362,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 0.0006400409626216078,
2876
+ "grad_norm": 0.62890625,
2877
+ "learning_rate": 0.0001,
2878
+ "loss": 0.3869,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 0.0006416020381401971,
2883
+ "grad_norm": 0.8359375,
2884
+ "learning_rate": 0.0001,
2885
+ "loss": 0.3777,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 0.0006431631136587864,
2890
+ "grad_norm": 0.625,
2891
+ "learning_rate": 0.0001,
2892
+ "loss": 0.3722,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 0.0006447241891773756,
2897
+ "grad_norm": 0.59375,
2898
+ "learning_rate": 0.0001,
2899
+ "loss": 0.3756,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 0.0006462852646959649,
2904
+ "grad_norm": 0.734375,
2905
+ "learning_rate": 0.0001,
2906
+ "loss": 0.4324,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 0.0006478463402145542,
2911
+ "grad_norm": 0.9609375,
2912
+ "learning_rate": 0.0001,
2913
+ "loss": 0.3727,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 0.0006494074157331435,
2918
+ "grad_norm": 0.65625,
2919
+ "learning_rate": 0.0001,
2920
+ "loss": 0.367,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 0.0006509684912517328,
2925
+ "grad_norm": 0.63671875,
2926
+ "learning_rate": 0.0001,
2927
+ "loss": 0.3533,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 0.0006525295667703221,
2932
+ "grad_norm": 0.7109375,
2933
+ "learning_rate": 0.0001,
2934
+ "loss": 0.3653,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 0.0006540906422889114,
2939
+ "grad_norm": 0.73046875,
2940
+ "learning_rate": 0.0001,
2941
+ "loss": 0.3782,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 0.0006556517178075007,
2946
+ "grad_norm": 0.65625,
2947
+ "learning_rate": 0.0001,
2948
+ "loss": 0.3655,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 0.0006572127933260899,
2953
+ "grad_norm": 0.578125,
2954
+ "learning_rate": 0.0001,
2955
+ "loss": 0.3658,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 0.0006587738688446792,
2960
+ "grad_norm": 0.78515625,
2961
+ "learning_rate": 0.0001,
2962
+ "loss": 0.3492,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 0.0006603349443632685,
2967
+ "grad_norm": 0.6484375,
2968
+ "learning_rate": 0.0001,
2969
+ "loss": 0.3725,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 0.0006618960198818578,
2974
+ "grad_norm": 0.63671875,
2975
+ "learning_rate": 0.0001,
2976
+ "loss": 0.3691,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 0.0006634570954004471,
2981
+ "grad_norm": 0.65234375,
2982
+ "learning_rate": 0.0001,
2983
+ "loss": 0.3537,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 0.0006650181709190364,
2988
+ "grad_norm": 0.66796875,
2989
+ "learning_rate": 0.0001,
2990
+ "loss": 0.4247,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 0.0006665792464376257,
2995
+ "grad_norm": 0.51953125,
2996
+ "learning_rate": 0.0001,
2997
+ "loss": 0.417,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 0.000668140321956215,
3002
+ "grad_norm": 0.86328125,
3003
+ "learning_rate": 0.0001,
3004
+ "loss": 0.3537,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 0.0006697013974748042,
3009
+ "grad_norm": 0.51171875,
3010
+ "learning_rate": 0.0001,
3011
+ "loss": 0.3648,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 0.0006712624729933935,
3016
+ "grad_norm": 0.6171875,
3017
+ "learning_rate": 0.0001,
3018
+ "loss": 0.3962,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 0.0006728235485119828,
3023
+ "grad_norm": 0.69921875,
3024
+ "learning_rate": 0.0001,
3025
+ "loss": 0.3553,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 0.0006743846240305721,
3030
+ "grad_norm": 0.53515625,
3031
+ "learning_rate": 0.0001,
3032
+ "loss": 0.3407,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 0.0006759456995491614,
3037
+ "grad_norm": 0.671875,
3038
+ "learning_rate": 0.0001,
3039
+ "loss": 0.4124,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 0.0006775067750677507,
3044
+ "grad_norm": 0.59375,
3045
+ "learning_rate": 0.0001,
3046
+ "loss": 0.3783,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 0.00067906785058634,
3051
+ "grad_norm": 0.65625,
3052
+ "learning_rate": 0.0001,
3053
+ "loss": 0.3586,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 0.0006806289261049293,
3058
+ "grad_norm": 0.60546875,
3059
+ "learning_rate": 0.0001,
3060
+ "loss": 0.3491,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 0.0006821900016235185,
3065
+ "grad_norm": 0.6171875,
3066
+ "learning_rate": 0.0001,
3067
+ "loss": 0.3991,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 0.0006837510771421078,
3072
+ "grad_norm": 0.69140625,
3073
+ "learning_rate": 0.0001,
3074
+ "loss": 0.3578,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 0.0006853121526606971,
3079
+ "grad_norm": 0.58984375,
3080
+ "learning_rate": 0.0001,
3081
+ "loss": 0.3394,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 0.0006868732281792864,
3086
+ "grad_norm": 0.64453125,
3087
+ "learning_rate": 0.0001,
3088
+ "loss": 0.3403,
3089
+ "step": 440
3090
+ },
3091
+ {
3092
+ "epoch": 0.0006884343036978757,
3093
+ "grad_norm": 0.57421875,
3094
+ "learning_rate": 0.0001,
3095
+ "loss": 0.3523,
3096
+ "step": 441
3097
+ },
3098
+ {
3099
+ "epoch": 0.000689995379216465,
3100
+ "grad_norm": 0.515625,
3101
+ "learning_rate": 0.0001,
3102
+ "loss": 0.397,
3103
+ "step": 442
3104
+ },
3105
+ {
3106
+ "epoch": 0.0006915564547350543,
3107
+ "grad_norm": 0.62890625,
3108
+ "learning_rate": 0.0001,
3109
+ "loss": 0.3327,
3110
+ "step": 443
3111
+ },
3112
+ {
3113
+ "epoch": 0.0006931175302536435,
3114
+ "grad_norm": 0.6015625,
3115
+ "learning_rate": 0.0001,
3116
+ "loss": 0.3446,
3117
+ "step": 444
3118
+ },
3119
+ {
3120
+ "epoch": 0.0006946786057722328,
3121
+ "grad_norm": 0.53515625,
3122
+ "learning_rate": 0.0001,
3123
+ "loss": 0.3552,
3124
+ "step": 445
3125
+ },
3126
+ {
3127
+ "epoch": 0.0006962396812908221,
3128
+ "grad_norm": 0.68359375,
3129
+ "learning_rate": 0.0001,
3130
+ "loss": 0.3401,
3131
+ "step": 446
3132
+ },
3133
+ {
3134
+ "epoch": 0.0006978007568094114,
3135
+ "grad_norm": 0.6328125,
3136
+ "learning_rate": 0.0001,
3137
+ "loss": 0.345,
3138
+ "step": 447
3139
+ },
3140
+ {
3141
+ "epoch": 0.0006993618323280007,
3142
+ "grad_norm": 0.56640625,
3143
+ "learning_rate": 0.0001,
3144
+ "loss": 0.3484,
3145
+ "step": 448
3146
+ },
3147
+ {
3148
+ "epoch": 0.00070092290784659,
3149
+ "grad_norm": 0.5703125,
3150
+ "learning_rate": 0.0001,
3151
+ "loss": 0.3328,
3152
+ "step": 449
3153
+ },
3154
+ {
3155
+ "epoch": 0.0007024839833651793,
3156
+ "grad_norm": 0.77734375,
3157
+ "learning_rate": 0.0001,
3158
+ "loss": 0.363,
3159
+ "step": 450
3160
+ },
3161
+ {
3162
+ "epoch": 0.0007040450588837686,
3163
+ "grad_norm": 0.55859375,
3164
+ "learning_rate": 0.0001,
3165
+ "loss": 0.3292,
3166
+ "step": 451
3167
+ },
3168
+ {
3169
+ "epoch": 0.0007056061344023578,
3170
+ "grad_norm": 0.671875,
3171
+ "learning_rate": 0.0001,
3172
+ "loss": 0.3437,
3173
+ "step": 452
3174
+ },
3175
+ {
3176
+ "epoch": 0.0007071672099209471,
3177
+ "grad_norm": 0.5703125,
3178
+ "learning_rate": 0.0001,
3179
+ "loss": 0.3601,
3180
+ "step": 453
3181
+ },
3182
+ {
3183
+ "epoch": 0.0007087282854395364,
3184
+ "grad_norm": 0.50390625,
3185
+ "learning_rate": 0.0001,
3186
+ "loss": 0.3458,
3187
+ "step": 454
3188
+ },
3189
+ {
3190
+ "epoch": 0.0007102893609581257,
3191
+ "grad_norm": 0.51953125,
3192
+ "learning_rate": 0.0001,
3193
+ "loss": 0.403,
3194
+ "step": 455
3195
+ },
3196
+ {
3197
+ "epoch": 0.000711850436476715,
3198
+ "grad_norm": 0.5625,
3199
+ "learning_rate": 0.0001,
3200
+ "loss": 0.3283,
3201
+ "step": 456
3202
+ },
3203
+ {
3204
+ "epoch": 0.0007134115119953043,
3205
+ "grad_norm": 0.59375,
3206
+ "learning_rate": 0.0001,
3207
+ "loss": 0.3367,
3208
+ "step": 457
3209
+ },
3210
+ {
3211
+ "epoch": 0.0007149725875138936,
3212
+ "grad_norm": 0.609375,
3213
+ "learning_rate": 0.0001,
3214
+ "loss": 0.3623,
3215
+ "step": 458
3216
+ },
3217
+ {
3218
+ "epoch": 0.0007165336630324829,
3219
+ "grad_norm": 0.54296875,
3220
+ "learning_rate": 0.0001,
3221
+ "loss": 0.3457,
3222
+ "step": 459
3223
+ },
3224
+ {
3225
+ "epoch": 0.0007180947385510721,
3226
+ "grad_norm": 0.609375,
3227
+ "learning_rate": 0.0001,
3228
+ "loss": 0.3444,
3229
+ "step": 460
3230
+ },
3231
+ {
3232
+ "epoch": 0.0007196558140696614,
3233
+ "grad_norm": 0.6015625,
3234
+ "learning_rate": 0.0001,
3235
+ "loss": 0.3456,
3236
+ "step": 461
3237
+ },
3238
+ {
3239
+ "epoch": 0.0007212168895882507,
3240
+ "grad_norm": 0.6875,
3241
+ "learning_rate": 0.0001,
3242
+ "loss": 0.3489,
3243
+ "step": 462
3244
+ },
3245
+ {
3246
+ "epoch": 0.00072277796510684,
3247
+ "grad_norm": 0.6484375,
3248
+ "learning_rate": 0.0001,
3249
+ "loss": 0.3466,
3250
+ "step": 463
3251
+ },
3252
+ {
3253
+ "epoch": 0.0007243390406254293,
3254
+ "grad_norm": 0.6171875,
3255
+ "learning_rate": 0.0001,
3256
+ "loss": 0.3456,
3257
+ "step": 464
3258
+ },
3259
+ {
3260
+ "epoch": 0.0007259001161440186,
3261
+ "grad_norm": 0.58203125,
3262
+ "learning_rate": 0.0001,
3263
+ "loss": 0.3945,
3264
+ "step": 465
3265
+ },
3266
+ {
3267
+ "epoch": 0.0007274611916626079,
3268
+ "grad_norm": 0.6484375,
3269
+ "learning_rate": 0.0001,
3270
+ "loss": 0.3402,
3271
+ "step": 466
3272
+ },
3273
+ {
3274
+ "epoch": 0.0007290222671811972,
3275
+ "grad_norm": 0.56640625,
3276
+ "learning_rate": 0.0001,
3277
+ "loss": 0.3283,
3278
+ "step": 467
3279
+ },
3280
+ {
3281
+ "epoch": 0.0007305833426997864,
3282
+ "grad_norm": 0.546875,
3283
+ "learning_rate": 0.0001,
3284
+ "loss": 0.3223,
3285
+ "step": 468
3286
+ },
3287
+ {
3288
+ "epoch": 0.0007321444182183757,
3289
+ "grad_norm": 0.515625,
3290
+ "learning_rate": 0.0001,
3291
+ "loss": 0.3262,
3292
+ "step": 469
3293
+ },
3294
+ {
3295
+ "epoch": 0.000733705493736965,
3296
+ "grad_norm": 0.49609375,
3297
+ "learning_rate": 0.0001,
3298
+ "loss": 0.3165,
3299
+ "step": 470
3300
+ },
3301
+ {
3302
+ "epoch": 0.0007352665692555543,
3303
+ "grad_norm": 0.53125,
3304
+ "learning_rate": 0.0001,
3305
+ "loss": 0.3157,
3306
+ "step": 471
3307
+ },
3308
+ {
3309
+ "epoch": 0.0007368276447741436,
3310
+ "grad_norm": 0.4765625,
3311
+ "learning_rate": 0.0001,
3312
+ "loss": 0.3164,
3313
+ "step": 472
3314
+ },
3315
+ {
3316
+ "epoch": 0.0007383887202927329,
3317
+ "grad_norm": 0.51171875,
3318
+ "learning_rate": 0.0001,
3319
+ "loss": 0.3294,
3320
+ "step": 473
3321
+ },
3322
+ {
3323
+ "epoch": 0.0007399497958113222,
3324
+ "grad_norm": 0.55859375,
3325
+ "learning_rate": 0.0001,
3326
+ "loss": 0.3218,
3327
+ "step": 474
3328
+ },
3329
+ {
3330
+ "epoch": 0.0007415108713299115,
3331
+ "grad_norm": 0.46875,
3332
+ "learning_rate": 0.0001,
3333
+ "loss": 0.3316,
3334
+ "step": 475
3335
+ },
3336
+ {
3337
+ "epoch": 0.0007430719468485007,
3338
+ "grad_norm": 0.53515625,
3339
+ "learning_rate": 0.0001,
3340
+ "loss": 0.3292,
3341
+ "step": 476
3342
+ },
3343
+ {
3344
+ "epoch": 0.00074463302236709,
3345
+ "grad_norm": 0.50390625,
3346
+ "learning_rate": 0.0001,
3347
+ "loss": 0.3253,
3348
+ "step": 477
3349
+ },
3350
+ {
3351
+ "epoch": 0.0007461940978856793,
3352
+ "grad_norm": 0.482421875,
3353
+ "learning_rate": 0.0001,
3354
+ "loss": 0.3424,
3355
+ "step": 478
3356
+ },
3357
+ {
3358
+ "epoch": 0.0007477551734042686,
3359
+ "grad_norm": 0.609375,
3360
+ "learning_rate": 0.0001,
3361
+ "loss": 0.3813,
3362
+ "step": 479
3363
+ },
3364
+ {
3365
+ "epoch": 0.0007493162489228579,
3366
+ "grad_norm": 0.578125,
3367
+ "learning_rate": 0.0001,
3368
+ "loss": 0.3219,
3369
+ "step": 480
3370
+ },
3371
+ {
3372
+ "epoch": 0.0007508773244414472,
3373
+ "grad_norm": 0.62109375,
3374
+ "learning_rate": 0.0001,
3375
+ "loss": 0.3306,
3376
+ "step": 481
3377
+ },
3378
+ {
3379
+ "epoch": 0.0007524383999600365,
3380
+ "grad_norm": 0.5859375,
3381
+ "learning_rate": 0.0001,
3382
+ "loss": 0.3271,
3383
+ "step": 482
3384
+ },
3385
+ {
3386
+ "epoch": 0.0007539994754786258,
3387
+ "grad_norm": 0.53515625,
3388
+ "learning_rate": 0.0001,
3389
+ "loss": 0.3221,
3390
+ "step": 483
3391
+ },
3392
+ {
3393
+ "epoch": 0.000755560550997215,
3394
+ "grad_norm": 0.53125,
3395
+ "learning_rate": 0.0001,
3396
+ "loss": 0.3679,
3397
+ "step": 484
3398
+ },
3399
+ {
3400
+ "epoch": 0.0007571216265158043,
3401
+ "grad_norm": 0.6640625,
3402
+ "learning_rate": 0.0001,
3403
+ "loss": 0.3441,
3404
+ "step": 485
3405
+ },
3406
+ {
3407
+ "epoch": 0.0007586827020343936,
3408
+ "grad_norm": 0.57421875,
3409
+ "learning_rate": 0.0001,
3410
+ "loss": 0.3927,
3411
+ "step": 486
3412
+ },
3413
+ {
3414
+ "epoch": 0.0007602437775529829,
3415
+ "grad_norm": 0.58984375,
3416
+ "learning_rate": 0.0001,
3417
+ "loss": 0.3338,
3418
+ "step": 487
3419
+ },
3420
+ {
3421
+ "epoch": 0.0007618048530715722,
3422
+ "grad_norm": 0.515625,
3423
+ "learning_rate": 0.0001,
3424
+ "loss": 0.3221,
3425
+ "step": 488
3426
+ },
3427
+ {
3428
+ "epoch": 0.0007633659285901615,
3429
+ "grad_norm": 0.5234375,
3430
+ "learning_rate": 0.0001,
3431
+ "loss": 0.3034,
3432
+ "step": 489
3433
+ },
3434
+ {
3435
+ "epoch": 0.0007649270041087508,
3436
+ "grad_norm": 0.51171875,
3437
+ "learning_rate": 0.0001,
3438
+ "loss": 0.3105,
3439
+ "step": 490
3440
+ },
3441
+ {
3442
+ "epoch": 0.00076648807962734,
3443
+ "grad_norm": 0.6171875,
3444
+ "learning_rate": 0.0001,
3445
+ "loss": 0.3687,
3446
+ "step": 491
3447
+ },
3448
+ {
3449
+ "epoch": 0.0007680491551459293,
3450
+ "grad_norm": 0.6796875,
3451
+ "learning_rate": 0.0001,
3452
+ "loss": 0.3142,
3453
+ "step": 492
3454
+ },
3455
+ {
3456
+ "epoch": 0.0007696102306645186,
3457
+ "grad_norm": 0.5078125,
3458
+ "learning_rate": 0.0001,
3459
+ "loss": 0.3105,
3460
+ "step": 493
3461
+ },
3462
+ {
3463
+ "epoch": 0.0007711713061831079,
3464
+ "grad_norm": 0.53515625,
3465
+ "learning_rate": 0.0001,
3466
+ "loss": 0.3158,
3467
+ "step": 494
3468
+ },
3469
+ {
3470
+ "epoch": 0.0007727323817016972,
3471
+ "grad_norm": 0.59375,
3472
+ "learning_rate": 0.0001,
3473
+ "loss": 0.3057,
3474
+ "step": 495
3475
+ },
3476
+ {
3477
+ "epoch": 0.0007742934572202865,
3478
+ "grad_norm": 0.62890625,
3479
+ "learning_rate": 0.0001,
3480
+ "loss": 0.3655,
3481
+ "step": 496
3482
+ },
3483
+ {
3484
+ "epoch": 0.0007758545327388758,
3485
+ "grad_norm": 0.76953125,
3486
+ "learning_rate": 0.0001,
3487
+ "loss": 0.3113,
3488
+ "step": 497
3489
+ },
3490
+ {
3491
+ "epoch": 0.0007774156082574651,
3492
+ "grad_norm": 0.625,
3493
+ "learning_rate": 0.0001,
3494
+ "loss": 0.3669,
3495
+ "step": 498
3496
+ },
3497
+ {
3498
+ "epoch": 0.0007789766837760543,
3499
+ "grad_norm": 0.55859375,
3500
+ "learning_rate": 0.0001,
3501
+ "loss": 0.3214,
3502
+ "step": 499
3503
+ },
3504
+ {
3505
+ "epoch": 0.0007805377592946436,
3506
+ "grad_norm": 0.640625,
3507
+ "learning_rate": 0.0001,
3508
+ "loss": 0.3215,
3509
+ "step": 500
3510
+ },
3511
+ {
3512
+ "epoch": 0.0007820988348132329,
3513
+ "grad_norm": 0.59375,
3514
+ "learning_rate": 0.0001,
3515
+ "loss": 0.3567,
3516
+ "step": 501
3517
+ },
3518
+ {
3519
+ "epoch": 0.0007836599103318222,
3520
+ "grad_norm": 0.64453125,
3521
+ "learning_rate": 0.0001,
3522
+ "loss": 0.3133,
3523
+ "step": 502
3524
+ },
3525
+ {
3526
+ "epoch": 0.0007852209858504115,
3527
+ "grad_norm": 0.796875,
3528
+ "learning_rate": 0.0001,
3529
+ "loss": 0.3114,
3530
+ "step": 503
3531
+ },
3532
+ {
3533
+ "epoch": 0.0007867820613690008,
3534
+ "grad_norm": 0.5859375,
3535
+ "learning_rate": 0.0001,
3536
+ "loss": 0.3093,
3537
+ "step": 504
3538
+ },
3539
+ {
3540
+ "epoch": 0.0007883431368875901,
3541
+ "grad_norm": 0.515625,
3542
+ "learning_rate": 0.0001,
3543
+ "loss": 0.3018,
3544
+ "step": 505
3545
+ },
3546
+ {
3547
+ "epoch": 0.0007899042124061794,
3548
+ "grad_norm": 0.6484375,
3549
+ "learning_rate": 0.0001,
3550
+ "loss": 0.3054,
3551
+ "step": 506
3552
+ },
3553
+ {
3554
+ "epoch": 0.0007914652879247686,
3555
+ "grad_norm": 0.515625,
3556
+ "learning_rate": 0.0001,
3557
+ "loss": 0.3659,
3558
+ "step": 507
3559
+ },
3560
+ {
3561
+ "epoch": 0.0007930263634433579,
3562
+ "grad_norm": 0.59375,
3563
+ "learning_rate": 0.0001,
3564
+ "loss": 0.3062,
3565
+ "step": 508
3566
+ },
3567
+ {
3568
+ "epoch": 0.0007945874389619472,
3569
+ "grad_norm": 0.55078125,
3570
+ "learning_rate": 0.0001,
3571
+ "loss": 0.3097,
3572
+ "step": 509
3573
+ },
3574
+ {
3575
+ "epoch": 0.0007961485144805365,
3576
+ "grad_norm": 0.4765625,
3577
+ "learning_rate": 0.0001,
3578
+ "loss": 0.3542,
3579
+ "step": 510
3580
+ },
3581
+ {
3582
+ "epoch": 0.0007977095899991258,
3583
+ "grad_norm": 0.5390625,
3584
+ "learning_rate": 0.0001,
3585
+ "loss": 0.2866,
3586
+ "step": 511
3587
+ },
3588
+ {
3589
+ "epoch": 0.0007992706655177151,
3590
+ "grad_norm": 0.609375,
3591
+ "learning_rate": 0.0001,
3592
+ "loss": 0.3201,
3593
+ "step": 512
3594
+ },
3595
+ {
3596
+ "epoch": 0.0008008317410363044,
3597
+ "grad_norm": 0.5078125,
3598
+ "learning_rate": 0.0001,
3599
+ "loss": 0.3095,
3600
+ "step": 513
3601
+ },
3602
+ {
3603
+ "epoch": 0.0008023928165548937,
3604
+ "grad_norm": 0.5859375,
3605
+ "learning_rate": 0.0001,
3606
+ "loss": 0.3453,
3607
+ "step": 514
3608
+ },
3609
+ {
3610
+ "epoch": 0.000803953892073483,
3611
+ "grad_norm": 0.76171875,
3612
+ "learning_rate": 0.0001,
3613
+ "loss": 0.3052,
3614
+ "step": 515
3615
+ },
3616
+ {
3617
+ "epoch": 0.0008055149675920722,
3618
+ "grad_norm": 0.66796875,
3619
+ "learning_rate": 0.0001,
3620
+ "loss": 0.3219,
3621
+ "step": 516
3622
+ },
3623
+ {
3624
+ "epoch": 0.0008070760431106615,
3625
+ "grad_norm": 0.828125,
3626
+ "learning_rate": 0.0001,
3627
+ "loss": 0.364,
3628
+ "step": 517
3629
+ },
3630
+ {
3631
+ "epoch": 0.0008086371186292508,
3632
+ "grad_norm": 0.52734375,
3633
+ "learning_rate": 0.0001,
3634
+ "loss": 0.3447,
3635
+ "step": 518
3636
+ },
3637
+ {
3638
+ "epoch": 0.0008101981941478401,
3639
+ "grad_norm": 0.703125,
3640
+ "learning_rate": 0.0001,
3641
+ "loss": 0.2974,
3642
+ "step": 519
3643
+ },
3644
+ {
3645
+ "epoch": 0.0008117592696664294,
3646
+ "grad_norm": 0.6875,
3647
+ "learning_rate": 0.0001,
3648
+ "loss": 0.3645,
3649
+ "step": 520
3650
+ },
3651
+ {
3652
+ "epoch": 0.0008133203451850187,
3653
+ "grad_norm": 0.62109375,
3654
+ "learning_rate": 0.0001,
3655
+ "loss": 0.3043,
3656
+ "step": 521
3657
+ },
3658
+ {
3659
+ "epoch": 0.000814881420703608,
3660
+ "grad_norm": 0.68359375,
3661
+ "learning_rate": 0.0001,
3662
+ "loss": 0.3291,
3663
+ "step": 522
3664
+ },
3665
+ {
3666
+ "epoch": 0.0008164424962221972,
3667
+ "grad_norm": 0.6484375,
3668
+ "learning_rate": 0.0001,
3669
+ "loss": 0.2986,
3670
+ "step": 523
3671
+ },
3672
+ {
3673
+ "epoch": 0.0008180035717407865,
3674
+ "grad_norm": 0.54296875,
3675
+ "learning_rate": 0.0001,
3676
+ "loss": 0.3032,
3677
+ "step": 524
3678
+ },
3679
+ {
3680
+ "epoch": 0.0008195646472593758,
3681
+ "grad_norm": 0.60546875,
3682
+ "learning_rate": 0.0001,
3683
+ "loss": 0.3547,
3684
+ "step": 525
3685
+ },
3686
+ {
3687
+ "epoch": 0.0008211257227779651,
3688
+ "grad_norm": 0.61328125,
3689
+ "learning_rate": 0.0001,
3690
+ "loss": 0.3067,
3691
+ "step": 526
3692
+ },
3693
+ {
3694
+ "epoch": 0.0008226867982965544,
3695
+ "grad_norm": 0.57421875,
3696
+ "learning_rate": 0.0001,
3697
+ "loss": 0.3021,
3698
+ "step": 527
3699
+ },
3700
+ {
3701
+ "epoch": 0.0008242478738151437,
3702
+ "grad_norm": 0.5234375,
3703
+ "learning_rate": 0.0001,
3704
+ "loss": 0.3533,
3705
+ "step": 528
3706
+ },
3707
+ {
3708
+ "epoch": 0.000825808949333733,
3709
+ "grad_norm": 0.55859375,
3710
+ "learning_rate": 0.0001,
3711
+ "loss": 0.2936,
3712
+ "step": 529
3713
+ },
3714
+ {
3715
+ "epoch": 0.0008273700248523223,
3716
+ "grad_norm": 0.62890625,
3717
+ "learning_rate": 0.0001,
3718
+ "loss": 0.3007,
3719
+ "step": 530
3720
+ },
3721
+ {
3722
+ "epoch": 0.0008289311003709115,
3723
+ "grad_norm": 0.66796875,
3724
+ "learning_rate": 0.0001,
3725
+ "loss": 0.3614,
3726
+ "step": 531
3727
+ },
3728
+ {
3729
+ "epoch": 0.0008304921758895008,
3730
+ "grad_norm": 0.7109375,
3731
+ "learning_rate": 0.0001,
3732
+ "loss": 0.3416,
3733
+ "step": 532
3734
+ },
3735
+ {
3736
+ "epoch": 0.0008320532514080901,
3737
+ "grad_norm": 0.640625,
3738
+ "learning_rate": 0.0001,
3739
+ "loss": 0.3472,
3740
+ "step": 533
3741
+ },
3742
+ {
3743
+ "epoch": 0.0008336143269266794,
3744
+ "grad_norm": 0.69921875,
3745
+ "learning_rate": 0.0001,
3746
+ "loss": 0.3217,
3747
+ "step": 534
3748
+ },
3749
+ {
3750
+ "epoch": 0.0008351754024452687,
3751
+ "grad_norm": 0.66015625,
3752
+ "learning_rate": 0.0001,
3753
+ "loss": 0.304,
3754
+ "step": 535
3755
+ },
3756
+ {
3757
+ "epoch": 0.000836736477963858,
3758
+ "grad_norm": 0.515625,
3759
+ "learning_rate": 0.0001,
3760
+ "loss": 0.2929,
3761
+ "step": 536
3762
+ },
3763
+ {
3764
+ "epoch": 0.0008382975534824473,
3765
+ "grad_norm": 0.60546875,
3766
+ "learning_rate": 0.0001,
3767
+ "loss": 0.3392,
3768
+ "step": 537
3769
+ },
3770
+ {
3771
+ "epoch": 0.0008398586290010366,
3772
+ "grad_norm": 0.63671875,
3773
+ "learning_rate": 0.0001,
3774
+ "loss": 0.2906,
3775
+ "step": 538
3776
+ },
3777
+ {
3778
+ "epoch": 0.0008414197045196258,
3779
+ "grad_norm": 0.61328125,
3780
+ "learning_rate": 0.0001,
3781
+ "loss": 0.2999,
3782
+ "step": 539
3783
+ },
3784
+ {
3785
+ "epoch": 0.0008429807800382151,
3786
+ "grad_norm": 0.70703125,
3787
+ "learning_rate": 0.0001,
3788
+ "loss": 0.3044,
3789
+ "step": 540
3790
+ },
3791
+ {
3792
+ "epoch": 0.0008445418555568044,
3793
+ "grad_norm": 0.5625,
3794
+ "learning_rate": 0.0001,
3795
+ "loss": 0.2877,
3796
+ "step": 541
3797
+ },
3798
+ {
3799
+ "epoch": 0.0008461029310753937,
3800
+ "grad_norm": 0.64453125,
3801
+ "learning_rate": 0.0001,
3802
+ "loss": 0.2899,
3803
+ "step": 542
3804
+ },
3805
+ {
3806
+ "epoch": 0.000847664006593983,
3807
+ "grad_norm": 0.58984375,
3808
+ "learning_rate": 0.0001,
3809
+ "loss": 0.3337,
3810
+ "step": 543
3811
+ },
3812
+ {
3813
+ "epoch": 0.0008492250821125723,
3814
+ "grad_norm": 0.70703125,
3815
+ "learning_rate": 0.0001,
3816
+ "loss": 0.2974,
3817
+ "step": 544
3818
+ },
3819
+ {
3820
+ "epoch": 0.0008507861576311616,
3821
+ "grad_norm": 0.53125,
3822
+ "learning_rate": 0.0001,
3823
+ "loss": 0.2843,
3824
+ "step": 545
3825
+ },
3826
+ {
3827
+ "epoch": 0.0008523472331497509,
3828
+ "grad_norm": 0.69921875,
3829
+ "learning_rate": 0.0001,
3830
+ "loss": 0.3668,
3831
+ "step": 546
3832
+ },
3833
+ {
3834
+ "epoch": 0.0008539083086683401,
3835
+ "grad_norm": 0.51953125,
3836
+ "learning_rate": 0.0001,
3837
+ "loss": 0.3406,
3838
+ "step": 547
3839
+ },
3840
+ {
3841
+ "epoch": 0.0008554693841869294,
3842
+ "grad_norm": 0.51171875,
3843
+ "learning_rate": 0.0001,
3844
+ "loss": 0.3291,
3845
+ "step": 548
3846
+ },
3847
+ {
3848
+ "epoch": 0.0008570304597055187,
3849
+ "grad_norm": 0.62890625,
3850
+ "learning_rate": 0.0001,
3851
+ "loss": 0.2875,
3852
+ "step": 549
3853
+ },
3854
+ {
3855
+ "epoch": 0.000858591535224108,
3856
+ "grad_norm": 0.52734375,
3857
+ "learning_rate": 0.0001,
3858
+ "loss": 0.2728,
3859
+ "step": 550
3860
+ },
3861
+ {
3862
+ "epoch": 0.0008601526107426973,
3863
+ "grad_norm": 0.462890625,
3864
+ "learning_rate": 0.0001,
3865
+ "loss": 0.2711,
3866
+ "step": 551
3867
+ },
3868
+ {
3869
+ "epoch": 0.0008617136862612866,
3870
+ "grad_norm": 0.53515625,
3871
+ "learning_rate": 0.0001,
3872
+ "loss": 0.2792,
3873
+ "step": 552
3874
+ },
3875
+ {
3876
+ "epoch": 0.0008632747617798759,
3877
+ "grad_norm": 0.53125,
3878
+ "learning_rate": 0.0001,
3879
+ "loss": 0.2633,
3880
+ "step": 553
3881
+ },
3882
+ {
3883
+ "epoch": 0.0008648358372984651,
3884
+ "grad_norm": 0.5234375,
3885
+ "learning_rate": 0.0001,
3886
+ "loss": 0.2924,
3887
+ "step": 554
3888
+ },
3889
+ {
3890
+ "epoch": 0.0008663969128170544,
3891
+ "grad_norm": 0.50390625,
3892
+ "learning_rate": 0.0001,
3893
+ "loss": 0.2685,
3894
+ "step": 555
3895
+ },
3896
+ {
3897
+ "epoch": 0.0008679579883356437,
3898
+ "grad_norm": 0.51953125,
3899
+ "learning_rate": 0.0001,
3900
+ "loss": 0.2905,
3901
+ "step": 556
3902
+ },
3903
+ {
3904
+ "epoch": 0.000869519063854233,
3905
+ "grad_norm": 0.58984375,
3906
+ "learning_rate": 0.0001,
3907
+ "loss": 0.2899,
3908
+ "step": 557
3909
+ },
3910
+ {
3911
+ "epoch": 0.0008710801393728223,
3912
+ "grad_norm": 0.4609375,
3913
+ "learning_rate": 0.0001,
3914
+ "loss": 0.2795,
3915
+ "step": 558
3916
+ },
3917
+ {
3918
+ "epoch": 0.0008726412148914116,
3919
+ "grad_norm": 0.5390625,
3920
+ "learning_rate": 0.0001,
3921
+ "loss": 0.278,
3922
+ "step": 559
3923
+ },
3924
+ {
3925
+ "epoch": 0.0008742022904100009,
3926
+ "grad_norm": 0.5625,
3927
+ "learning_rate": 0.0001,
3928
+ "loss": 0.2798,
3929
+ "step": 560
3930
+ },
3931
+ {
3932
+ "epoch": 0.0008757633659285902,
3933
+ "grad_norm": 0.51171875,
3934
+ "learning_rate": 0.0001,
3935
+ "loss": 0.2797,
3936
+ "step": 561
3937
+ },
3938
+ {
3939
+ "epoch": 0.0008773244414471794,
3940
+ "grad_norm": 0.53515625,
3941
+ "learning_rate": 0.0001,
3942
+ "loss": 0.287,
3943
+ "step": 562
3944
+ },
3945
+ {
3946
+ "epoch": 0.0008788855169657687,
3947
+ "grad_norm": 0.81640625,
3948
+ "learning_rate": 0.0001,
3949
+ "loss": 0.3754,
3950
+ "step": 563
3951
+ },
3952
+ {
3953
+ "epoch": 0.000880446592484358,
3954
+ "grad_norm": 0.94140625,
3955
+ "learning_rate": 0.0001,
3956
+ "loss": 0.2784,
3957
+ "step": 564
3958
+ },
3959
+ {
3960
+ "epoch": 0.0008820076680029473,
3961
+ "grad_norm": 0.609375,
3962
+ "learning_rate": 0.0001,
3963
+ "loss": 0.2647,
3964
+ "step": 565
3965
+ },
3966
+ {
3967
+ "epoch": 0.0008835687435215366,
3968
+ "grad_norm": 0.75,
3969
+ "learning_rate": 0.0001,
3970
+ "loss": 0.3092,
3971
+ "step": 566
3972
+ },
3973
+ {
3974
+ "epoch": 0.0008851298190401259,
3975
+ "grad_norm": 0.58984375,
3976
+ "learning_rate": 0.0001,
3977
+ "loss": 0.3364,
3978
+ "step": 567
3979
+ },
3980
+ {
3981
+ "epoch": 0.0008866908945587152,
3982
+ "grad_norm": 0.6171875,
3983
+ "learning_rate": 0.0001,
3984
+ "loss": 0.2655,
3985
+ "step": 568
3986
+ },
3987
+ {
3988
+ "epoch": 0.0008882519700773045,
3989
+ "grad_norm": 0.70703125,
3990
+ "learning_rate": 0.0001,
3991
+ "loss": 0.2768,
3992
+ "step": 569
3993
+ },
3994
+ {
3995
+ "epoch": 0.0008898130455958937,
3996
+ "grad_norm": 0.671875,
3997
+ "learning_rate": 0.0001,
3998
+ "loss": 0.3295,
3999
+ "step": 570
4000
+ },
4001
+ {
4002
+ "epoch": 0.000891374121114483,
4003
+ "grad_norm": 0.90234375,
4004
+ "learning_rate": 0.0001,
4005
+ "loss": 0.3053,
4006
+ "step": 571
4007
+ },
4008
+ {
4009
+ "epoch": 0.0008929351966330723,
4010
+ "grad_norm": 0.578125,
4011
+ "learning_rate": 0.0001,
4012
+ "loss": 0.2601,
4013
+ "step": 572
4014
+ },
4015
+ {
4016
+ "epoch": 0.0008944962721516616,
4017
+ "grad_norm": 0.5703125,
4018
+ "learning_rate": 0.0001,
4019
+ "loss": 0.2743,
4020
+ "step": 573
4021
+ },
4022
+ {
4023
+ "epoch": 0.0008960573476702509,
4024
+ "grad_norm": 0.49609375,
4025
+ "learning_rate": 0.0001,
4026
+ "loss": 0.2645,
4027
+ "step": 574
4028
+ },
4029
+ {
4030
+ "epoch": 0.0008976184231888402,
4031
+ "grad_norm": 0.60546875,
4032
+ "learning_rate": 0.0001,
4033
+ "loss": 0.4089,
4034
+ "step": 575
4035
+ },
4036
+ {
4037
+ "epoch": 0.0008991794987074295,
4038
+ "grad_norm": 0.734375,
4039
+ "learning_rate": 0.0001,
4040
+ "loss": 0.2643,
4041
+ "step": 576
4042
+ },
4043
+ {
4044
+ "epoch": 0.0009007405742260188,
4045
+ "grad_norm": 0.61328125,
4046
+ "learning_rate": 0.0001,
4047
+ "loss": 0.2858,
4048
+ "step": 577
4049
+ },
4050
+ {
4051
+ "epoch": 0.000902301649744608,
4052
+ "grad_norm": 0.609375,
4053
+ "learning_rate": 0.0001,
4054
+ "loss": 0.2518,
4055
+ "step": 578
4056
+ },
4057
+ {
4058
+ "epoch": 0.0009038627252631973,
4059
+ "grad_norm": 0.6640625,
4060
+ "learning_rate": 0.0001,
4061
+ "loss": 0.2542,
4062
+ "step": 579
4063
+ },
4064
+ {
4065
+ "epoch": 0.0009054238007817866,
4066
+ "grad_norm": 0.7890625,
4067
+ "learning_rate": 0.0001,
4068
+ "loss": 0.2899,
4069
+ "step": 580
4070
+ },
4071
+ {
4072
+ "epoch": 0.0009069848763003759,
4073
+ "grad_norm": 0.52734375,
4074
+ "learning_rate": 0.0001,
4075
+ "loss": 0.2722,
4076
+ "step": 581
4077
+ },
4078
+ {
4079
+ "epoch": 0.0009085459518189652,
4080
+ "grad_norm": 0.48046875,
4081
+ "learning_rate": 0.0001,
4082
+ "loss": 0.2938,
4083
+ "step": 582
4084
+ },
4085
+ {
4086
+ "epoch": 0.0009101070273375545,
4087
+ "grad_norm": 0.7109375,
4088
+ "learning_rate": 0.0001,
4089
+ "loss": 0.3614,
4090
+ "step": 583
4091
+ },
4092
+ {
4093
+ "epoch": 0.0009116681028561438,
4094
+ "grad_norm": 0.6484375,
4095
+ "learning_rate": 0.0001,
4096
+ "loss": 0.2842,
4097
+ "step": 584
4098
+ },
4099
+ {
4100
+ "epoch": 0.0009132291783747331,
4101
+ "grad_norm": 0.8515625,
4102
+ "learning_rate": 0.0001,
4103
+ "loss": 0.336,
4104
+ "step": 585
4105
+ },
4106
+ {
4107
+ "epoch": 0.0009147902538933223,
4108
+ "grad_norm": 0.53515625,
4109
+ "learning_rate": 0.0001,
4110
+ "loss": 0.2707,
4111
+ "step": 586
4112
+ },
4113
+ {
4114
+ "epoch": 0.0009163513294119116,
4115
+ "grad_norm": 0.61328125,
4116
+ "learning_rate": 0.0001,
4117
+ "loss": 0.2671,
4118
+ "step": 587
4119
+ },
4120
+ {
4121
+ "epoch": 0.0009179124049305009,
4122
+ "grad_norm": 0.734375,
4123
+ "learning_rate": 0.0001,
4124
+ "loss": 0.3474,
4125
+ "step": 588
4126
+ },
4127
+ {
4128
+ "epoch": 0.0009194734804490902,
4129
+ "grad_norm": 0.6796875,
4130
+ "learning_rate": 0.0001,
4131
+ "loss": 0.2815,
4132
+ "step": 589
4133
+ },
4134
+ {
4135
+ "epoch": 0.0009210345559676795,
4136
+ "grad_norm": 0.65625,
4137
+ "learning_rate": 0.0001,
4138
+ "loss": 0.2866,
4139
+ "step": 590
4140
+ },
4141
+ {
4142
+ "epoch": 0.0009225956314862688,
4143
+ "grad_norm": 0.53125,
4144
+ "learning_rate": 0.0001,
4145
+ "loss": 0.2701,
4146
+ "step": 591
4147
+ },
4148
+ {
4149
+ "epoch": 0.0009241567070048581,
4150
+ "grad_norm": 0.69921875,
4151
+ "learning_rate": 0.0001,
4152
+ "loss": 0.3314,
4153
+ "step": 592
4154
+ },
4155
+ {
4156
+ "epoch": 0.0009257177825234474,
4157
+ "grad_norm": 0.55859375,
4158
+ "learning_rate": 0.0001,
4159
+ "loss": 0.3962,
4160
+ "step": 593
4161
+ },
4162
+ {
4163
+ "epoch": 0.0009272788580420366,
4164
+ "grad_norm": 0.78125,
4165
+ "learning_rate": 0.0001,
4166
+ "loss": 0.2653,
4167
+ "step": 594
4168
+ },
4169
+ {
4170
+ "epoch": 0.0009288399335606259,
4171
+ "grad_norm": 0.54296875,
4172
+ "learning_rate": 0.0001,
4173
+ "loss": 0.2764,
4174
+ "step": 595
4175
+ },
4176
+ {
4177
+ "epoch": 0.0009304010090792152,
4178
+ "grad_norm": 0.455078125,
4179
+ "learning_rate": 0.0001,
4180
+ "loss": 0.2629,
4181
+ "step": 596
4182
+ },
4183
+ {
4184
+ "epoch": 0.0009319620845978045,
4185
+ "grad_norm": 0.7890625,
4186
+ "learning_rate": 0.0001,
4187
+ "loss": 0.341,
4188
+ "step": 597
4189
+ },
4190
+ {
4191
+ "epoch": 0.0009335231601163938,
4192
+ "grad_norm": 0.671875,
4193
+ "learning_rate": 0.0001,
4194
+ "loss": 0.2707,
4195
+ "step": 598
4196
+ },
4197
+ {
4198
+ "epoch": 0.0009350842356349831,
4199
+ "grad_norm": 0.53125,
4200
+ "learning_rate": 0.0001,
4201
+ "loss": 0.2689,
4202
+ "step": 599
4203
+ },
4204
+ {
4205
+ "epoch": 0.0009366453111535724,
4206
+ "grad_norm": 0.51171875,
4207
+ "learning_rate": 0.0001,
4208
+ "loss": 0.3153,
4209
+ "step": 600
4210
+ }
4211
+ ],
4212
+ "logging_steps": 1.0,
4213
+ "max_steps": 640584,
4214
+ "num_input_tokens_seen": 0,
4215
+ "num_train_epochs": 1,
4216
+ "save_steps": 200,
4217
+ "stateful_callbacks": {
4218
+ "TrainerControl": {
4219
+ "args": {
4220
+ "should_epoch_stop": false,
4221
+ "should_evaluate": false,
4222
+ "should_log": false,
4223
+ "should_save": true,
4224
+ "should_training_stop": false
4225
+ },
4226
+ "attributes": {}
4227
+ }
4228
+ },
4229
+ "total_flos": 157202564472832.0,
4230
+ "train_batch_size": 2,
4231
+ "trial_name": null,
4232
+ "trial_params": null
4233
+ }
lumina_ar-1_diffuser-6_step-600/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adf739e1b00513e6c0f9ce5531df177dfe61846a88250d8c6d36890a2edc970c
3
+ size 5816