Upload usage.py
Browse files
usage.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.llms import HuggingFacePipeline
|
2 |
+
from langchain.chains import LLMChain
|
3 |
+
from langchain.prompts import PromptTemplate
|
4 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
+
|
6 |
+
class NameExtractorChain:
|
7 |
+
def __init__(self, model_name: str = "name-extraction"):
|
8 |
+
self.pipe = pipeline(
|
9 |
+
"text2text-generation",
|
10 |
+
model=model_name,
|
11 |
+
max_new_tokens=10,
|
12 |
+
model_kwargs={"temperature": 0}
|
13 |
+
)
|
14 |
+
|
15 |
+
self.llm = HuggingFacePipeline(pipeline=self.pipe)
|
16 |
+
|
17 |
+
self.prompt = PromptTemplate(
|
18 |
+
input_variables=["conversation"],
|
19 |
+
|
20 |
+
template="""Extract only the name of the person from this conversation.
|
21 |
+
If there's no name, return 'No name found'.
|
22 |
+
Conversation: {conversation}""")
|
23 |
+
self.chain = LLMChain(llm=self.llm, prompt=self.prompt)
|
24 |
+
|
25 |
+
|
26 |
+
def extract_name(self, text: str):
|
27 |
+
text=text.strip()
|
28 |
+
if len(text.split())==1:
|
29 |
+
text= "It's " + text
|
30 |
+
try:
|
31 |
+
output = self.chain.run(conversation=text)
|
32 |
+
return output
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error processing text: {str(e)}")
|
35 |
+
|
36 |
+
|
37 |
+
extractor = NameExtractorChain()
|
38 |
+
print(extractor.extract_name(sample-text))
|