File size: 6,057 Bytes
5ebbd51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-cased_fine_tuned_food_ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-cased_fine_tuned_food_ner

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6129
- Precision: 0.9080
- Recall: 0.9328
- F1: 0.9203
- Accuracy: 0.9095

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 40   | 1.2541          | 0.7806    | 0.7299 | 0.7544 | 0.6782   |
| No log        | 2.0   | 80   | 0.7404          | 0.8301    | 0.8657 | 0.8475 | 0.8047   |
| No log        | 3.0   | 120  | 0.5886          | 0.8416    | 0.8900 | 0.8651 | 0.8507   |
| No log        | 4.0   | 160  | 0.5094          | 0.8772    | 0.9122 | 0.8944 | 0.8727   |
| No log        | 5.0   | 200  | 0.4724          | 0.8727    | 0.9159 | 0.8938 | 0.8863   |
| No log        | 6.0   | 240  | 0.4471          | 0.8975    | 0.9240 | 0.9105 | 0.8960   |
| No log        | 7.0   | 280  | 0.4446          | 0.9028    | 0.9255 | 0.9140 | 0.9006   |
| No log        | 8.0   | 320  | 0.4437          | 0.9042    | 0.9336 | 0.9187 | 0.9032   |
| No log        | 9.0   | 360  | 0.4582          | 0.9144    | 0.9299 | 0.9221 | 0.9074   |
| No log        | 10.0  | 400  | 0.4525          | 0.9080    | 0.9328 | 0.9203 | 0.9066   |
| No log        | 11.0  | 440  | 0.4650          | 0.9076    | 0.9351 | 0.9211 | 0.9032   |
| No log        | 12.0  | 480  | 0.4725          | 0.9119    | 0.9395 | 0.9255 | 0.9095   |
| 0.406         | 13.0  | 520  | 0.4862          | 0.9161    | 0.9343 | 0.9251 | 0.9095   |
| 0.406         | 14.0  | 560  | 0.4735          | 0.9214    | 0.9424 | 0.9318 | 0.9154   |
| 0.406         | 15.0  | 600  | 0.4973          | 0.9085    | 0.9380 | 0.9230 | 0.9095   |
| 0.406         | 16.0  | 640  | 0.5075          | 0.9026    | 0.9373 | 0.9196 | 0.9099   |
| 0.406         | 17.0  | 680  | 0.5057          | 0.9124    | 0.9380 | 0.9250 | 0.9121   |
| 0.406         | 18.0  | 720  | 0.5179          | 0.9098    | 0.9380 | 0.9237 | 0.9129   |
| 0.406         | 19.0  | 760  | 0.5156          | 0.9111    | 0.9380 | 0.9244 | 0.9121   |
| 0.406         | 20.0  | 800  | 0.5325          | 0.9077    | 0.9358 | 0.9215 | 0.9099   |
| 0.406         | 21.0  | 840  | 0.5350          | 0.9203    | 0.9373 | 0.9287 | 0.9137   |
| 0.406         | 22.0  | 880  | 0.5405          | 0.9077    | 0.9365 | 0.9219 | 0.9108   |
| 0.406         | 23.0  | 920  | 0.5682          | 0.9107    | 0.9336 | 0.9220 | 0.9066   |
| 0.406         | 24.0  | 960  | 0.5545          | 0.9109    | 0.9351 | 0.9228 | 0.9095   |
| 0.0303        | 25.0  | 1000 | 0.5717          | 0.9044    | 0.9351 | 0.9194 | 0.9049   |
| 0.0303        | 26.0  | 1040 | 0.5637          | 0.9101    | 0.9343 | 0.9221 | 0.9108   |
| 0.0303        | 27.0  | 1080 | 0.5736          | 0.9102    | 0.9351 | 0.9225 | 0.9104   |
| 0.0303        | 28.0  | 1120 | 0.5793          | 0.9027    | 0.9380 | 0.9200 | 0.9074   |
| 0.0303        | 29.0  | 1160 | 0.5753          | 0.9137    | 0.9380 | 0.9257 | 0.9112   |
| 0.0303        | 30.0  | 1200 | 0.5804          | 0.9111    | 0.9380 | 0.9244 | 0.9108   |
| 0.0303        | 31.0  | 1240 | 0.5877          | 0.9123    | 0.9365 | 0.9243 | 0.9099   |
| 0.0303        | 32.0  | 1280 | 0.5837          | 0.9116    | 0.9358 | 0.9235 | 0.9087   |
| 0.0303        | 33.0  | 1320 | 0.5886          | 0.9113    | 0.9402 | 0.9255 | 0.9108   |
| 0.0303        | 34.0  | 1360 | 0.5847          | 0.9145    | 0.9387 | 0.9264 | 0.9121   |
| 0.0303        | 35.0  | 1400 | 0.5981          | 0.9083    | 0.9358 | 0.9218 | 0.9082   |
| 0.0303        | 36.0  | 1440 | 0.5963          | 0.9056    | 0.9343 | 0.9197 | 0.9095   |
| 0.0303        | 37.0  | 1480 | 0.6027          | 0.9101    | 0.9343 | 0.9221 | 0.9104   |
| 0.0086        | 38.0  | 1520 | 0.6003          | 0.9102    | 0.9351 | 0.9225 | 0.9099   |
| 0.0086        | 39.0  | 1560 | 0.5958          | 0.9082    | 0.9343 | 0.9211 | 0.9095   |
| 0.0086        | 40.0  | 1600 | 0.6054          | 0.9059    | 0.9306 | 0.9181 | 0.9091   |
| 0.0086        | 41.0  | 1640 | 0.6056          | 0.9075    | 0.9343 | 0.9207 | 0.9112   |
| 0.0086        | 42.0  | 1680 | 0.6029          | 0.9080    | 0.9321 | 0.9199 | 0.9091   |
| 0.0086        | 43.0  | 1720 | 0.6027          | 0.9109    | 0.9351 | 0.9228 | 0.9104   |
| 0.0086        | 44.0  | 1760 | 0.6071          | 0.9075    | 0.9336 | 0.9203 | 0.9099   |
| 0.0086        | 45.0  | 1800 | 0.6100          | 0.9102    | 0.9351 | 0.9225 | 0.9095   |
| 0.0086        | 46.0  | 1840 | 0.6106          | 0.9102    | 0.9351 | 0.9225 | 0.9104   |
| 0.0086        | 47.0  | 1880 | 0.6132          | 0.9101    | 0.9343 | 0.9221 | 0.9091   |
| 0.0086        | 48.0  | 1920 | 0.6134          | 0.9095    | 0.9343 | 0.9217 | 0.9095   |
| 0.0086        | 49.0  | 1960 | 0.6129          | 0.9080    | 0.9328 | 0.9203 | 0.9095   |
| 0.005         | 50.0  | 2000 | 0.6129          | 0.9080    | 0.9328 | 0.9203 | 0.9095   |


### Framework versions

- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1