update-README
Browse files
README.md
CHANGED
@@ -1,11 +1,17 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
|
8 |
-
|
9 |
|
10 |
|
11 |
|
@@ -13,187 +19,175 @@ tags: []
|
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
-
- **Repository:** [
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
|
|
|
|
43 |
|
44 |
-
|
45 |
|
46 |
-
### Downstream Use
|
47 |
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
[More Information Needed]
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
|
82 |
-
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
|
|
92 |
|
93 |
-
|
94 |
|
95 |
-
-
|
96 |
|
97 |
-
|
98 |
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
|
109 |
-
|
110 |
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
-
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
124 |
|
125 |
-
|
126 |
|
127 |
### Results
|
128 |
|
129 |
-
|
130 |
|
131 |
-
|
132 |
|
|
|
133 |
|
|
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
|
145 |
-
|
146 |
|
147 |
-
-
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
## Technical Specifications
|
154 |
|
155 |
### Model Architecture and Objective
|
156 |
|
157 |
-
|
158 |
|
159 |
-
|
160 |
|
161 |
-
|
162 |
|
163 |
#### Hardware
|
164 |
|
165 |
-
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
|
189 |
-
##
|
190 |
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
## Model Card Authors
|
194 |
|
195 |
-
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- yahma/alpaca-cleaned
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
base_model:
|
9 |
+
- NousResearch/Hermes-2-Pro-Mistral-7B
|
10 |
---
|
11 |
|
12 |
+
# 📘 Model Card for askmydocs-lora-v1
|
13 |
|
14 |
+
This model card provides detailed information about askmydocs-lora-v1, a fine-tuned conversational AI model.
|
15 |
|
16 |
|
17 |
|
|
|
19 |
|
20 |
### Model Description
|
21 |
|
22 |
+
askmydocs-lora-v1 is a lightweight and efficient instruction-tuned conversational AI model derived from Hermes-2-Pro-Mistral-7b, optimized using Low-Rank Adaptation (LoRA). It was fine-tuned with the yahma/alpaca-cleaned dataset, specifically a curated subset of 10,000 samples, to enhance performance in retrieval and conversational interactions.
|
23 |
|
24 |
+
- Developed by: deanngkl
|
25 |
|
26 |
+
- Model Type: Instruction-tuned conversational AI (LLM)
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
- Languages: English (primarily)
|
29 |
+
|
30 |
+
- License: Apache-2.0
|
31 |
+
|
32 |
+
- Fine-tuned from model: Hermes-2-Pro-Mistral-7b
|
33 |
+
|
34 |
+
### Model Sources
|
35 |
|
36 |
<!-- Provide the basic links for the model. -->
|
37 |
|
38 |
+
- **Repository:** [Hugging Face Repository](https://huggingface.co/deanngkl/askmydocs-lora-v1)
|
|
|
|
|
39 |
|
40 |
## Uses
|
41 |
|
|
|
|
|
42 |
### Direct Use
|
43 |
|
44 |
+
- Conversational AI for general queries
|
45 |
+
|
46 |
+
- Retrieval-Augmented Generation (RAG) tasks
|
47 |
|
48 |
+
- Document summarization and information extraction
|
49 |
|
50 |
+
### Downstream Use
|
51 |
|
52 |
+
- Integration into conversational AI platforms
|
53 |
+
|
54 |
+
- Customized document analysis systems
|
55 |
+
|
56 |
+
- Enhanced customer support solutions
|
57 |
|
|
|
58 |
|
59 |
### Out-of-Scope Use
|
60 |
|
61 |
+
- Critical decision-making in healthcare, finance, or legal matters without thorough human review
|
62 |
|
63 |
+
- Non-English linguistic applications
|
64 |
|
65 |
## Bias, Risks, and Limitations
|
66 |
|
67 |
+
- May reflect biases present in training data (yahma/alpaca-cleaned)
|
68 |
+
|
69 |
+
- Limited effectiveness in domains outside the training scope or highly specialized subjects
|
70 |
|
|
|
71 |
|
72 |
### Recommendations
|
73 |
|
74 |
+
- Users should carefully assess the model outputs for bias and accuracy, especially when deploying in sensitive contexts.
|
75 |
|
76 |
+
- External validation is recommended for critical applications.
|
77 |
|
78 |
## How to Get Started with the Model
|
79 |
|
80 |
+
```python
|
81 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
82 |
+
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained("deanngkl/askmydocs-lora-v1")
|
84 |
+
model = AutoModelForCausalLM.from_pretrained(
|
85 |
+
"deanngkl/askmydocs-lora-v1",
|
86 |
+
load_in_4bit=True,
|
87 |
+
device_map="auto"
|
88 |
+
)
|
89 |
|
90 |
+
chat = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
91 |
+
response = chat("📄 Document content here\n\nQ: Summarize the document.")
|
92 |
+
print(response[0]['generated_text'])
|
93 |
+
```
|
94 |
|
95 |
## Training Details
|
96 |
|
97 |
### Training Data
|
98 |
|
99 |
+
- Dataset: yahma/alpaca-cleaned (10,000 samples)
|
100 |
|
101 |
+
- Preprocessing: Standardized prompts, deduplication, profanity and bias filtering
|
102 |
|
103 |
### Training Procedure
|
104 |
|
105 |
+
- Method: LoRA (Low-Rank Adaptation)
|
106 |
|
107 |
+
- Epochs: 3
|
108 |
|
109 |
+
- Batch Size: 4 (gradient accumulation steps: 4)
|
110 |
|
111 |
+
- Learning Rate: 1e-4
|
112 |
|
113 |
+
- Optimizer: AdamW with cosine decay and warm-up
|
114 |
|
115 |
+
- Precision: Mixed (fp16)
|
116 |
|
117 |
+
- Hardware: RunPod Cloud with NVIDIA RTX A5000 GPU (24 GB VRAM)
|
118 |
|
|
|
119 |
|
|
|
120 |
|
121 |
+
#### Speeds, Sizes, Times
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
- Checkpoint Size: ~100 MB (LoRA adapters)
|
124 |
|
125 |
+
- Training Duration: Approximately 3 hours
|
126 |
|
127 |
+
## Evaluation
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
### Testing Data, Factors & Metrics
|
130 |
|
131 |
+
- [Tensorboard Log](https://huggingface.co/deanngkl/askmydocs-lora-v1/tensorboard)
|
132 |
|
133 |
+
- Testing Data: Validation subset (5% of the training set)
|
134 |
|
135 |
+
- Metrics: Loss reduction, coherence, instruction-following accuracy
|
136 |
|
137 |
### Results
|
138 |
|
139 |
+
- Validation Loss: Decreased consistently, indicating stable training
|
140 |
|
141 |
+
- Instruction-following: Improved coherence and context-awareness
|
142 |
|
143 |
+
## Environmental Impact
|
144 |
|
145 |
+
Carbon emissions were minimized by using efficient LoRA fine-tuning on cloud infrastructure:
|
146 |
|
147 |
+
- Hardware Type: NVIDIA RTX A5000
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
- Cloud Provider: RunPod
|
150 |
|
151 |
+
- Compute Region: US (West Coast)
|
152 |
|
153 |
+
- Estimated Carbon Emissions: Low (due to efficient GPU usage and short training duration)
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
## Technical Specifications
|
156 |
|
157 |
### Model Architecture and Objective
|
158 |
|
159 |
+
- Architecture: Hermes-2-Pro-Mistral-7b with LoRA adapters
|
160 |
|
161 |
+
- Objective: Enhanced conversational abilities for retrieval and instructional tasks
|
162 |
|
163 |
+
### Compute Infrastructure
|
164 |
|
165 |
#### Hardware
|
166 |
|
167 |
+
Hardware: NVIDIA RTX A5000 (24 GB VRAM)
|
168 |
|
169 |
#### Software
|
170 |
|
171 |
+
Software: Hugging Face Transformers, PyTorch, BitsAndBytes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
+
## Citation
|
174 |
|
175 |
+
```citation
|
176 |
+
@misc{deanngkl_askmydocs_lora_v1_2025,
|
177 |
+
title = {askmydocs-lora-v1: Instruction-tuned Hermes-2-Pro-Mistral-7B via LoRA},
|
178 |
+
author = {deanngkl},
|
179 |
+
year = {2025},
|
180 |
+
howpublished = {\url{https://huggingface.co/deanngkl/askmydocs-lora-v1}}
|
181 |
+
}
|
182 |
+
```
|
183 |
|
184 |
+
## Model Card Authors
|
185 |
|
186 |
+
**Dean Ng Kwan Lung**
|
187 |
|
188 |
## Model Card Contact
|
189 |
|
190 |
+
Blog : [Portfolio](https://kwanlung.github.io/)
|
191 |
+
LinkedIn : [LinkedIn](https://www.linkedin.com/in/deanng00/)
|
192 |
+
GitHub : [GitHub](https://github.com/kwanlung)
|
193 |
+
Email : [email protected]
|