deanngkl commited on
Commit
19afcc3
·
verified ·
1 Parent(s): 22df863

update-README

Browse files
Files changed (1) hide show
  1. README.md +96 -102
README.md CHANGED
@@ -1,11 +1,17 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
@@ -13,187 +19,175 @@ tags: []
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
 
 
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
49
 
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
61
 
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
 
 
 
73
 
74
- [More Information Needed]
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
- #### Speeds, Sizes, Times [optional]
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
102
 
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
 
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
  #### Hardware
164
 
165
- [More Information Needed]
166
 
167
  #### Software
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - yahma/alpaca-cleaned
6
+ language:
7
+ - en
8
+ base_model:
9
+ - NousResearch/Hermes-2-Pro-Mistral-7B
10
  ---
11
 
12
+ # 📘 Model Card for askmydocs-lora-v1
13
 
14
+ This model card provides detailed information about askmydocs-lora-v1, a fine-tuned conversational AI model.
15
 
16
 
17
 
 
19
 
20
  ### Model Description
21
 
22
+ askmydocs-lora-v1 is a lightweight and efficient instruction-tuned conversational AI model derived from Hermes-2-Pro-Mistral-7b, optimized using Low-Rank Adaptation (LoRA). It was fine-tuned with the yahma/alpaca-cleaned dataset, specifically a curated subset of 10,000 samples, to enhance performance in retrieval and conversational interactions.
23
 
24
+ - Developed by: deanngkl
25
 
26
+ - Model Type: Instruction-tuned conversational AI (LLM)
 
 
 
 
 
 
27
 
28
+ - Languages: English (primarily)
29
+
30
+ - License: Apache-2.0
31
+
32
+ - Fine-tuned from model: Hermes-2-Pro-Mistral-7b
33
+
34
+ ### Model Sources
35
 
36
  <!-- Provide the basic links for the model. -->
37
 
38
+ - **Repository:** [Hugging Face Repository](https://huggingface.co/deanngkl/askmydocs-lora-v1)
 
 
39
 
40
  ## Uses
41
 
 
 
42
  ### Direct Use
43
 
44
+ - Conversational AI for general queries
45
+
46
+ - Retrieval-Augmented Generation (RAG) tasks
47
 
48
+ - Document summarization and information extraction
49
 
50
+ ### Downstream Use
51
 
52
+ - Integration into conversational AI platforms
53
+
54
+ - Customized document analysis systems
55
+
56
+ - Enhanced customer support solutions
57
 
 
58
 
59
  ### Out-of-Scope Use
60
 
61
+ - Critical decision-making in healthcare, finance, or legal matters without thorough human review
62
 
63
+ - Non-English linguistic applications
64
 
65
  ## Bias, Risks, and Limitations
66
 
67
+ - May reflect biases present in training data (yahma/alpaca-cleaned)
68
+
69
+ - Limited effectiveness in domains outside the training scope or highly specialized subjects
70
 
 
71
 
72
  ### Recommendations
73
 
74
+ - Users should carefully assess the model outputs for bias and accuracy, especially when deploying in sensitive contexts.
75
 
76
+ - External validation is recommended for critical applications.
77
 
78
  ## How to Get Started with the Model
79
 
80
+ ```python
81
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
82
+
83
+ tokenizer = AutoTokenizer.from_pretrained("deanngkl/askmydocs-lora-v1")
84
+ model = AutoModelForCausalLM.from_pretrained(
85
+ "deanngkl/askmydocs-lora-v1",
86
+ load_in_4bit=True,
87
+ device_map="auto"
88
+ )
89
 
90
+ chat = pipeline("text-generation", model=model, tokenizer=tokenizer)
91
+ response = chat("📄 Document content here\n\nQ: Summarize the document.")
92
+ print(response[0]['generated_text'])
93
+ ```
94
 
95
  ## Training Details
96
 
97
  ### Training Data
98
 
99
+ - Dataset: yahma/alpaca-cleaned (10,000 samples)
100
 
101
+ - Preprocessing: Standardized prompts, deduplication, profanity and bias filtering
102
 
103
  ### Training Procedure
104
 
105
+ - Method: LoRA (Low-Rank Adaptation)
106
 
107
+ - Epochs: 3
108
 
109
+ - Batch Size: 4 (gradient accumulation steps: 4)
110
 
111
+ - Learning Rate: 1e-4
112
 
113
+ - Optimizer: AdamW with cosine decay and warm-up
114
 
115
+ - Precision: Mixed (fp16)
116
 
117
+ - Hardware: RunPod Cloud with NVIDIA RTX A5000 GPU (24 GB VRAM)
118
 
 
119
 
 
120
 
121
+ #### Speeds, Sizes, Times
 
 
 
 
122
 
123
+ - Checkpoint Size: ~100 MB (LoRA adapters)
124
 
125
+ - Training Duration: Approximately 3 hours
126
 
127
+ ## Evaluation
 
 
 
 
128
 
129
+ ### Testing Data, Factors & Metrics
130
 
131
+ - [Tensorboard Log](https://huggingface.co/deanngkl/askmydocs-lora-v1/tensorboard)
132
 
133
+ - Testing Data: Validation subset (5% of the training set)
134
 
135
+ - Metrics: Loss reduction, coherence, instruction-following accuracy
136
 
137
  ### Results
138
 
139
+ - Validation Loss: Decreased consistently, indicating stable training
140
 
141
+ - Instruction-following: Improved coherence and context-awareness
142
 
143
+ ## Environmental Impact
144
 
145
+ Carbon emissions were minimized by using efficient LoRA fine-tuning on cloud infrastructure:
146
 
147
+ - Hardware Type: NVIDIA RTX A5000
 
 
 
 
 
 
148
 
149
+ - Cloud Provider: RunPod
150
 
151
+ - Compute Region: US (West Coast)
152
 
153
+ - Estimated Carbon Emissions: Low (due to efficient GPU usage and short training duration)
 
 
 
 
154
 
155
+ ## Technical Specifications
156
 
157
  ### Model Architecture and Objective
158
 
159
+ - Architecture: Hermes-2-Pro-Mistral-7b with LoRA adapters
160
 
161
+ - Objective: Enhanced conversational abilities for retrieval and instructional tasks
162
 
163
+ ### Compute Infrastructure
164
 
165
  #### Hardware
166
 
167
+ Hardware: NVIDIA RTX A5000 (24 GB VRAM)
168
 
169
  #### Software
170
 
171
+ Software: Hugging Face Transformers, PyTorch, BitsAndBytes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
+ ## Citation
174
 
175
+ ```citation
176
+ @misc{deanngkl_askmydocs_lora_v1_2025,
177
+ title = {askmydocs-lora-v1: Instruction-tuned Hermes-2-Pro-Mistral-7B via LoRA},
178
+ author = {deanngkl},
179
+ year = {2025},
180
+ howpublished = {\url{https://huggingface.co/deanngkl/askmydocs-lora-v1}}
181
+ }
182
+ ```
183
 
184
+ ## Model Card Authors
185
 
186
+ **Dean Ng Kwan Lung**
187
 
188
  ## Model Card Contact
189
 
190
+ Blog : [Portfolio](https://kwanlung.github.io/)
191
+ LinkedIn : [LinkedIn](https://www.linkedin.com/in/deanng00/)
192
+ GitHub : [GitHub](https://github.com/kwanlung)
193
+ Email : [email protected]