File size: 6,113 Bytes
80c7523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python3
import os
import csv
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    get_linear_schedule_with_warmup
)
from peft import PeftModel
from torch.cuda.amp import autocast, GradScaler
from tqdm.auto import tqdm
from multiprocessing import freeze_support

class TripletDataset(Dataset):
    def __init__(self, path):
        self.samples = []
        with open(path, newline="") as f:
            reader = csv.DictReader(f)
            for row in reader:
                a_ids   = torch.tensor(list(map(int, row["a_ids"].split())), dtype=torch.long)
                a_mask  = torch.tensor(list(map(int, row["a_mask"].split())), dtype=torch.long)
                p_ids   = torch.tensor(list(map(int, row["p_ids"].split())), dtype=torch.long)
                p_mask  = torch.tensor(list(map(int, row["p_mask"].split())), dtype=torch.long)
                n_ids   = torch.tensor(list(map(int, row["n_ids"].split())), dtype=torch.long)
                n_mask  = torch.tensor(list(map(int, row["n_mask"].split())), dtype=torch.long)
                self.samples.append((a_ids, a_mask, p_ids, p_mask, n_ids, n_mask))

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, idx):
        return self.samples[idx]

class GemmaTripletModel(nn.Module):
    def __init__(self, peft_model):
        super().__init__()
        self.peft = peft_model
        H = peft_model.config.hidden_size
        self.proj = nn.Sequential(
            nn.Linear(H, 512),
            nn.ReLU(),
            nn.Linear(512, 256),
        )

    def forward(self, ids, mask):
        out = self.peft.base_model(          # PeftModel stores underlying model as .base_model
            input_ids=ids,
            attention_mask=mask,
            output_hidden_states=True,
            return_dict=True
        )
        last = out.hidden_states[-1]         # (B, T, H)
        pooled = last.mean(dim=1)            # mean pooling
        z = self.proj(pooled)
        norm = z.norm(p=2, dim=1, keepdim=True).clamp_min(1e-6)
        return z / norm

def collate_fn(batch):
    return tuple(torch.stack(x) for x in zip(*batch))

def main():
    # --- Config ---
    MODEL_NAME   = "google/gemma-3-1b-pt"
    STAGE1_DIR   = "stage1_simcse/final"
    TRAIN_FILE   = "train.csv"
    VAL_FILE     = "val.csv"
    BATCH_SIZE   = 12
    LR           = 1e-5
    WEIGHT_DECAY = 0.01
    NUM_EPOCHS   = 3
    MARGIN       = 0.2
    OUTPUT_DIR   = "phase2_triplet_amp"
    SEED         = 42

    os.makedirs(OUTPUT_DIR, exist_ok=True)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    torch.manual_seed(SEED)

    # --- Tokenizer & PEFT Model (load Stage 1) ---
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
    base = AutoModelForCausalLM.from_pretrained(MODEL_NAME, attn_implementation="eager")
    peft_model = PeftModel.from_pretrained(base, STAGE1_DIR)  # loads your Stage 1 LoRA weights

    # --- Embed + Projector ---
    model = GemmaTripletModel(peft_model).to(device)

    # --- Datasets & Loaders ---
    train_ds = TripletDataset(TRAIN_FILE)
    val_ds   = TripletDataset(VAL_FILE)
    train_loader = DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn)
    val_loader   = DataLoader(val_ds,   batch_size=BATCH_SIZE, shuffle=False, collate_fn=collate_fn)

    # --- Optimizer, Scheduler, AMP ---
    optimizer = torch.optim.AdamW(model.parameters(), lr=LR, weight_decay=WEIGHT_DECAY)
    total_steps = len(train_loader) * NUM_EPOCHS
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=int(0.1 * total_steps),
        num_training_steps=total_steps
    )
    scaler = GradScaler()

    # --- Loss ---
    triplet_loss = nn.TripletMarginLoss(margin=MARGIN, p=2)

    # --- Training Loop ---
    for epoch in range(1, NUM_EPOCHS + 1):
        model.train()
        running_loss = 0.0
        for a_ids, a_mask, p_ids, p_mask, n_ids, n_mask in tqdm(train_loader, desc=f"Train {epoch}", unit="batch"):
            a_ids, a_mask = a_ids.to(device), a_mask.to(device)
            p_ids, p_mask = p_ids.to(device), p_mask.to(device)
            n_ids, n_mask = n_ids.to(device), n_mask.to(device)

            optimizer.zero_grad()
            with autocast():
                emb_a = model(a_ids, a_mask)
                emb_p = model(p_ids, p_mask)
                emb_n = model(n_ids, n_mask)
                loss  = triplet_loss(emb_a, emb_p, emb_n)

            scaler.scale(loss).backward()
            scaler.step(optimizer)
            scaler.update()
            scheduler.step()
            running_loss += loss.item()

        print(f"Epoch {epoch} Train Loss: {running_loss/len(train_loader):.6f}")

        # --- Validation ---
        model.eval()
        val_loss = 0.0
        with torch.no_grad():
            for a_ids, a_mask, p_ids, p_mask, n_ids, n_mask in tqdm(val_loader, desc=f"Val {epoch}", unit="batch"):
                a_ids, a_mask = a_ids.to(device), a_mask.to(device)
                p_ids, p_mask = p_ids.to(device), p_mask.to(device)
                n_ids, n_mask = n_ids.to(device), n_mask.to(device)
                with autocast():
                    emb_a = model(a_ids, a_mask)
                    emb_p = model(p_ids, p_mask)
                    emb_n = model(n_ids, n_mask)
                    val_loss += triplet_loss(emb_a, emb_p, emb_n).item()

        print(f"Epoch {epoch} Val   Loss: {val_loss/len(val_loader):.6f}")

        # --- Checkpoint LoRA only ---
        ckpt_dir = os.path.join(OUTPUT_DIR, f"epoch{epoch}")
        peft_model.save_pretrained(ckpt_dir)
        tokenizer.save_pretrained(ckpt_dir)

    # --- Final Save ---
    final_dir = os.path.join(OUTPUT_DIR, "final")
    os.makedirs(final_dir, exist_ok=True)
    peft_model.save_pretrained(final_dir)
    tokenizer.save_pretrained(final_dir)
    print("Phase 2 complete. Checkpoints in", OUTPUT_DIR)

if __name__ == "__main__":
    freeze_support()
    main()