Unsloth Model Card
Browse files
README.md
CHANGED
@@ -1,155 +1,21 @@
|
|
1 |
---
|
2 |
-
base_model: unsloth/
|
3 |
tags:
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
license: apache-2.0
|
9 |
language:
|
10 |
-
|
11 |
-
pipeline_tag: image-text-to-text
|
12 |
-
widget:
|
13 |
-
- src: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/image_captioning/sample_image.png"
|
14 |
-
text: "What is this image about?"
|
15 |
-
example_title: "Sample Image Input"
|
16 |
---
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
The model processes both an image (or an image placeholder) and a text prompt.
|
24 |
|
25 |
-
|
26 |
-
It outputs a textual response based on the input prompt and any visual cues. You can ask it to provide detailed reasoning if desired.
|
27 |
-
|
28 |
-
- **Optimized for Efficiency:**
|
29 |
-
The model is loaded in 4-bit precision, making it more memory-efficient without significantly compromising performance.
|
30 |
-
|
31 |
-
---
|
32 |
-
|
33 |
-
## What the Model Does
|
34 |
-
|
35 |
-
1. **Image + Text Understanding:**
|
36 |
-
It takes an image along with a text instruction. In our code, we often use a dummy image as a placeholder.
|
37 |
-
|
38 |
-
2. **Instruction Following:**
|
39 |
-
The model is fine-tuned to follow instructions. For example, you can ask it to describe the image, provide step-by-step reasoning, or answer specific questions about the image.
|
40 |
-
|
41 |
-
3. **Efficient Inference:**
|
42 |
-
With 4-bit quantization, the model uses less GPU memory, making it suitable for environments with limited VRAM.
|
43 |
-
|
44 |
-
4. **Flexible Prompting:**
|
45 |
-
The final output depends on your prompt. Ask for step-by-step reasoning, concise answers, or detailed descriptions based on your needs.
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
instructions: >
|
50 |
-
This YAML file contains metadata, instructions, code, and explanation
|
51 |
-
for using a custom pipeline with a finetuned vision-language model.
|
52 |
-
|
53 |
-
**Setup Steps**
|
54 |
-
1. Install dependencies with: `pip install transformers Pillow`.
|
55 |
-
2. Load your model and tokenizer via Unsloth.
|
56 |
-
3. Place your dummy image (e.g. "Image_Editor.png") in the same folder.
|
57 |
-
4. Run the code in the `code` section to create and test the custom pipeline.
|
58 |
-
|
59 |
-
code: |
|
60 |
-
```python
|
61 |
-
from PIL import Image
|
62 |
-
from transformers.pipelines import Pipeline
|
63 |
-
|
64 |
-
# Open your dummy image (ensure "Image_Editor.png" is in your working directory)
|
65 |
-
dummy_image = Image.open("Image_Editor.png")
|
66 |
-
|
67 |
-
# Make sure your model and tokenizer are already loaded.
|
68 |
-
# For example:
|
69 |
-
# from unsloth import FastVisionModel, is_bf16_supported
|
70 |
-
# model, tokenizer = FastVisionModel.from_pretrained(
|
71 |
-
# "unsloth/Llama-3.2-11B-Vision-Instruct",
|
72 |
-
# load_in_4bit=True,
|
73 |
-
# use_gradient_checkpointing="unsloth",
|
74 |
-
# )
|
75 |
-
|
76 |
-
# --- Monkey-patch the tokenizer if it lacks pad_token_id ---
|
77 |
-
if not hasattr(tokenizer, "pad_token_id"):
|
78 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id if hasattr(tokenizer, "eos_token_id") else 0
|
79 |
-
|
80 |
-
class CustomImageTextToTextPipeline(Pipeline):
|
81 |
-
"""
|
82 |
-
A custom pipeline that accepts inputs as a list of dictionaries with "role" and "content".
|
83 |
-
It constructs a prompt that includes an image placeholder (using dummy_image) and tokenizes
|
84 |
-
the prompt along with the image.
|
85 |
-
"""
|
86 |
-
def __init__(self, model, tokenizer, dummy_image, **kwargs):
|
87 |
-
super().__init__(model=model, tokenizer=tokenizer, **kwargs)
|
88 |
-
self.dummy_image = dummy_image
|
89 |
-
# Determine device from the model parameters.
|
90 |
-
self.device = next(model.parameters()).device
|
91 |
-
|
92 |
-
def _sanitize_parameters(self, **kwargs):
|
93 |
-
# Required to instantiate the pipeline.
|
94 |
-
return {}, kwargs, {}
|
95 |
-
|
96 |
-
def preprocess(self, inputs, **kwargs):
|
97 |
-
"""
|
98 |
-
Expects inputs as a list of dicts with keys "role" and "content".
|
99 |
-
Constructs a chat prompt with an image placeholder and tokenizes it.
|
100 |
-
"""
|
101 |
-
if isinstance(inputs, list):
|
102 |
-
message = inputs[0]
|
103 |
-
elif isinstance(inputs, dict):
|
104 |
-
message = inputs
|
105 |
-
else:
|
106 |
-
raise ValueError("Input must be a dict or a list of dicts.")
|
107 |
-
|
108 |
-
text = message.get("content", "")
|
109 |
-
# Create a chat prompt using your expected format.
|
110 |
-
messages = [{
|
111 |
-
"role": message.get("role", "user"),
|
112 |
-
"content": [
|
113 |
-
{"type": "image"}, # Image placeholder
|
114 |
-
{"type": "text", "text": text} # Your input text
|
115 |
-
]
|
116 |
-
}]
|
117 |
-
# Use the tokenizer's chat template method to construct the final prompt.
|
118 |
-
input_text = self.tokenizer.apply_chat_template(messages, add_generation_prompt=True)
|
119 |
-
# Tokenize the prompt and dummy image.
|
120 |
-
model_inputs = self.tokenizer(
|
121 |
-
self.dummy_image,
|
122 |
-
input_text,
|
123 |
-
add_special_tokens=False,
|
124 |
-
return_tensors="pt"
|
125 |
-
).to(self.device)
|
126 |
-
return model_inputs
|
127 |
-
|
128 |
-
def _forward(self, model_inputs):
|
129 |
-
# Generate the model output.
|
130 |
-
return self.model.generate(
|
131 |
-
**model_inputs,
|
132 |
-
max_new_tokens=128,
|
133 |
-
use_cache=True,
|
134 |
-
temperature=1.5,
|
135 |
-
min_p=0.1,
|
136 |
-
)
|
137 |
-
|
138 |
-
def postprocess(self, model_outputs, **kwargs):
|
139 |
-
# Decode the generated tokens to human-readable text.
|
140 |
-
return self.tokenizer.decode(model_outputs[0], skip_special_tokens=True)
|
141 |
-
|
142 |
-
# Create an instance of the custom pipeline (do not specify a device if using Accelerate).
|
143 |
-
custom_pipe = CustomImageTextToTextPipeline(
|
144 |
-
model=model,
|
145 |
-
tokenizer=tokenizer,
|
146 |
-
dummy_image=dummy_image
|
147 |
-
)
|
148 |
-
|
149 |
-
# Test the pipeline using your input format.
|
150 |
-
messages = [{
|
151 |
-
"role": "user",
|
152 |
-
"content": "what is this image look like? Please explain your reasoning step-by-step before giving your answer."
|
153 |
-
}]
|
154 |
-
result = custom_pipe(messages)
|
155 |
-
print(result)
|
|
|
1 |
---
|
2 |
+
base_model: unsloth/Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bit
|
3 |
tags:
|
4 |
+
- text-generation-inference
|
5 |
+
- transformers
|
6 |
+
- unsloth
|
7 |
+
- mllama
|
8 |
license: apache-2.0
|
9 |
language:
|
10 |
+
- en
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
+
# Uploaded finetuned model
|
14 |
|
15 |
+
- **Developed by:** desiree
|
16 |
+
- **License:** apache-2.0
|
17 |
+
- **Finetuned from model :** unsloth/Llama-3.2-11B-Vision-Instruct-unsloth-bnb-4bit
|
18 |
|
19 |
+
This mllama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
|
|
20 |
|
21 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|