Upload 9 files
Browse files- README.md +113 -3
- config.json +433 -0
- language_detection.onnx +3 -0
- model.safetensors +3 -0
- special_tokens_map.json +37 -0
- to_onnx.py +256 -0
- tokenizer.json +0 -0
- tokenizer_config.json +56 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,113 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- language
|
5 |
+
- detection
|
6 |
+
- classification
|
7 |
+
license: mit
|
8 |
+
datasets:
|
9 |
+
- hac541309/open-lid-dataset
|
10 |
+
pipeline_tag: text-classification
|
11 |
+
---
|
12 |
+
|
13 |
+
# Language Detection Model
|
14 |
+
|
15 |
+
A **BERT-based** language detection model trained on [hac541309/open-lid-dataset](https://huggingface.co/datasets/hac541309/open-lid-dataset), which includes **121 million sentences across 200 languages**. This model is optimized for **fast and accurate** language identification in text classification tasks.
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
- **Architecture**: [BertForSequenceClassification](https://huggingface.co/transformers/model_doc/bert.html)
|
20 |
+
- **Hidden Size**: 384
|
21 |
+
- **Number of Layers**: 4
|
22 |
+
- **Attention Heads**: 6
|
23 |
+
- **Max Sequence Length**: 512
|
24 |
+
- **Dropout**: 0.1
|
25 |
+
- **Vocabulary Size**: 50,257
|
26 |
+
|
27 |
+
## Training Process
|
28 |
+
|
29 |
+
- **Dataset**:
|
30 |
+
- Used the [open-lid-dataset](https://huggingface.co/datasets/hac541309/open-lid-dataset)
|
31 |
+
- Split into train (90%) and test (10%)
|
32 |
+
- **Tokenizer**: A custom `BertTokenizerFast` with special tokens for `[UNK]`, `[CLS]`, `[SEP]`, `[PAD]`, `[MASK]`
|
33 |
+
- **Hyperparameters**:
|
34 |
+
- Learning Rate: 2e-5
|
35 |
+
- Batch Size: 256 (training) / 512 (testing)
|
36 |
+
- Epochs: 1
|
37 |
+
- Scheduler: Cosine
|
38 |
+
- **Trainer**: Leveraged the Hugging Face [Trainer API](https://huggingface.co/docs/transformers/main_classes/trainer) with Weights & Biases for logging
|
39 |
+
|
40 |
+
## Evaluation
|
41 |
+
|
42 |
+
The model was evaluated on the test split. Below are the overall metrics:
|
43 |
+
|
44 |
+
- **Accuracy**: 0.969466
|
45 |
+
- **Precision**: 0.969586
|
46 |
+
- **Recall**: 0.969466
|
47 |
+
- **F1 Score**: 0.969417
|
48 |
+
|
49 |
+
Detailled evaluation (Size is the number of languages supported)
|
50 |
+
|
51 |
+
| Script | Support | Precision | Recall | F1 Score | Size |
|
52 |
+
|--------|---------|-----------|--------|----------|------|
|
53 |
+
| Arab | 819219 | 0.9038 | 0.9014 | 0.9023 | 21 |
|
54 |
+
| Latn | 7924704 | 0.9678 | 0.9663 | 0.9670 | 125 |
|
55 |
+
| Ethi | 144403 | 0.9967 | 0.9964 | 0.9966 | 2 |
|
56 |
+
| Beng | 163983 | 0.9949 | 0.9935 | 0.9942 | 3 |
|
57 |
+
| Deva | 423895 | 0.9495 | 0.9326 | 0.9405 | 10 |
|
58 |
+
| Cyrl | 831949 | 0.9899 | 0.9883 | 0.9891 | 12 |
|
59 |
+
| Tibt | 35683 | 0.9925 | 0.9930 | 0.9927 | 2 |
|
60 |
+
| Grek | 131155 | 0.9984 | 0.9990 | 0.9987 | 1 |
|
61 |
+
| Gujr | 86912 | 0.99999 | 0.9999 | 0.99995 | 1 |
|
62 |
+
| Hebr | 100530 | 0.9966 | 0.9995 | 0.9981 | 2 |
|
63 |
+
| Armn | 67203 | 0.9999 | 0.9998 | 0.9998 | 1 |
|
64 |
+
| Jpan | 88004 | 0.9983 | 0.9987 | 0.9985 | 1 |
|
65 |
+
| Knda | 67170 | 0.9999 | 0.9998 | 0.9999 | 1 |
|
66 |
+
| Geor | 70769 | 0.99997 | 0.9998 | 0.9999 | 1 |
|
67 |
+
| Khmr | 39708 | 1.0000 | 0.9997 | 0.9999 | 1 |
|
68 |
+
| Hang | 108509 | 0.9997 | 0.9999 | 0.9998 | 1 |
|
69 |
+
| Laoo | 29389 | 0.9999 | 0.9999 | 0.9999 | 1 |
|
70 |
+
| Mlym | 68418 | 0.99996 | 0.9999 | 0.9999 | 1 |
|
71 |
+
| Mymr | 100857 | 0.9999 | 0.9992 | 0.9995 | 2 |
|
72 |
+
| Orya | 44976 | 0.9995 | 0.9998 | 0.9996 | 1 |
|
73 |
+
| Guru | 67106 | 0.99999 | 0.9999 | 0.9999 | 1 |
|
74 |
+
| Olck | 22279 | 1.0000 | 0.9991 | 0.9995 | 1 |
|
75 |
+
| Sinh | 67492 | 1.0000 | 0.9998 | 0.9999 | 1 |
|
76 |
+
| Taml | 76373 | 0.99997 | 0.9999 | 0.9999 | 1 |
|
77 |
+
| Tfng | 41325 | 0.8512 | 0.8246 | 0.8247 | 2 |
|
78 |
+
| Telu | 62387 | 0.99997 | 0.9999 | 0.9999 | 1 |
|
79 |
+
| Thai | 83820 | 0.99995 | 0.9998 | 0.9999 | 1 |
|
80 |
+
| Hant | 152723 | 0.9945 | 0.9954 | 0.9949 | 2 |
|
81 |
+
| Hans | 92689 | 0.9893 | 0.9870 | 0.9882 | 1 |
|
82 |
+
|
83 |
+
|
84 |
+
A detailed per-script classification report is also provided in the repository for further analysis.
|
85 |
+
|
86 |
+
---
|
87 |
+
|
88 |
+
### How to Use
|
89 |
+
|
90 |
+
You can quickly load and run inference with this model using the [Transformers pipeline](https://huggingface.co/docs/transformers/main_classes/pipelines):
|
91 |
+
|
92 |
+
```python
|
93 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
94 |
+
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained("alexneakameni/language_detection")
|
96 |
+
model = AutoModelForSequenceClassification.from_pretrained("alexneakameni/language_detection")
|
97 |
+
|
98 |
+
language_detection = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
99 |
+
|
100 |
+
text = "Hello world!"
|
101 |
+
predictions = language_detection(text)
|
102 |
+
print(predictions)
|
103 |
+
```
|
104 |
+
|
105 |
+
This will output the predicted language code or label with the corresponding confidence score.
|
106 |
+
|
107 |
+
---
|
108 |
+
|
109 |
+
**Note**: The model’s performance may vary depending on text length, language variety, and domain-specific vocabulary. Always validate results against your own datasets for critical applications.
|
110 |
+
|
111 |
+
For more information, see the [repository documentation](https://github.com/KameniAlexNea/learning_language).
|
112 |
+
|
113 |
+
Thank you for using this model—feedback and contributions are welcome!
|
config.json
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "data/results/checkpoint-76000",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"id2label": {
|
13 |
+
"0": "lit_Latn",
|
14 |
+
"1": "fon_Latn",
|
15 |
+
"2": "kin_Latn",
|
16 |
+
"3": "khm_Khmr",
|
17 |
+
"4": "bjn_Latn",
|
18 |
+
"5": "prs_Arab",
|
19 |
+
"6": "wol_Latn",
|
20 |
+
"7": "run_Latn",
|
21 |
+
"8": "eng_Latn",
|
22 |
+
"9": "gla_Latn",
|
23 |
+
"10": "lvs_Latn",
|
24 |
+
"11": "nya_Latn",
|
25 |
+
"12": "kac_Latn",
|
26 |
+
"13": "lua_Latn",
|
27 |
+
"14": "tuk_Latn",
|
28 |
+
"15": "tpi_Latn",
|
29 |
+
"16": "grn_Latn",
|
30 |
+
"17": "xho_Latn",
|
31 |
+
"18": "bam_Latn",
|
32 |
+
"19": "mri_Latn",
|
33 |
+
"20": "san_Deva",
|
34 |
+
"21": "isl_Latn",
|
35 |
+
"22": "kas_Deva",
|
36 |
+
"23": "bel_Cyrl",
|
37 |
+
"24": "heb_Hebr",
|
38 |
+
"25": "zho_Hant",
|
39 |
+
"26": "bak_Cyrl",
|
40 |
+
"27": "fra_Latn",
|
41 |
+
"28": "por_Latn",
|
42 |
+
"29": "ukr_Cyrl",
|
43 |
+
"30": "umb_Latn",
|
44 |
+
"31": "kan_Knda",
|
45 |
+
"32": "smo_Latn",
|
46 |
+
"33": "als_Latn",
|
47 |
+
"34": "kbp_Latn",
|
48 |
+
"35": "lin_Latn",
|
49 |
+
"36": "urd_Arab",
|
50 |
+
"37": "yor_Latn",
|
51 |
+
"38": "azb_Arab",
|
52 |
+
"39": "ltz_Latn",
|
53 |
+
"40": "twi_Latn",
|
54 |
+
"41": "hin_Deva",
|
55 |
+
"42": "tgl_Latn",
|
56 |
+
"43": "asm_Beng",
|
57 |
+
"44": "gaz_Latn",
|
58 |
+
"45": "ell_Grek",
|
59 |
+
"46": "taq_Tfng",
|
60 |
+
"47": "nso_Latn",
|
61 |
+
"48": "dan_Latn",
|
62 |
+
"49": "pes_Arab",
|
63 |
+
"50": "pan_Guru",
|
64 |
+
"51": "war_Latn",
|
65 |
+
"52": "mar_Deva",
|
66 |
+
"53": "mni_Beng",
|
67 |
+
"54": "acm_Arab",
|
68 |
+
"55": "srd_Latn",
|
69 |
+
"56": "vec_Latn",
|
70 |
+
"57": "ory_Orya",
|
71 |
+
"58": "lug_Latn",
|
72 |
+
"59": "ltg_Latn",
|
73 |
+
"60": "guj_Gujr",
|
74 |
+
"61": "ita_Latn",
|
75 |
+
"62": "swe_Latn",
|
76 |
+
"63": "cjk_Latn",
|
77 |
+
"64": "ace_Latn",
|
78 |
+
"65": "taq_Latn",
|
79 |
+
"66": "cat_Latn",
|
80 |
+
"67": "zsm_Latn",
|
81 |
+
"68": "hun_Latn",
|
82 |
+
"69": "kaz_Cyrl",
|
83 |
+
"70": "pol_Latn",
|
84 |
+
"71": "ban_Latn",
|
85 |
+
"72": "nus_Latn",
|
86 |
+
"73": "acq_Arab",
|
87 |
+
"74": "aeb_Arab",
|
88 |
+
"75": "spa_Latn",
|
89 |
+
"76": "slk_Latn",
|
90 |
+
"77": "hrv_Latn",
|
91 |
+
"78": "crh_Latn",
|
92 |
+
"79": "tur_Latn",
|
93 |
+
"80": "bos_Latn",
|
94 |
+
"81": "ssw_Latn",
|
95 |
+
"82": "kik_Latn",
|
96 |
+
"83": "ydd_Hebr",
|
97 |
+
"84": "snd_Arab",
|
98 |
+
"85": "hau_Latn",
|
99 |
+
"86": "tam_Taml",
|
100 |
+
"87": "plt_Latn",
|
101 |
+
"88": "kmr_Latn",
|
102 |
+
"89": "ace_Arab",
|
103 |
+
"90": "mkd_Cyrl",
|
104 |
+
"91": "lij_Latn",
|
105 |
+
"92": "dyu_Latn",
|
106 |
+
"93": "mos_Latn",
|
107 |
+
"94": "ayr_Latn",
|
108 |
+
"95": "ast_Latn",
|
109 |
+
"96": "fij_Latn",
|
110 |
+
"97": "lmo_Latn",
|
111 |
+
"98": "zho_Hans",
|
112 |
+
"99": "nob_Latn",
|
113 |
+
"100": "hye_Armn",
|
114 |
+
"101": "amh_Ethi",
|
115 |
+
"102": "jav_Latn",
|
116 |
+
"103": "sag_Latn",
|
117 |
+
"104": "mai_Deva",
|
118 |
+
"105": "lao_Laoo",
|
119 |
+
"106": "uzn_Latn",
|
120 |
+
"107": "mya_Mymr",
|
121 |
+
"108": "fin_Latn",
|
122 |
+
"109": "knc_Latn",
|
123 |
+
"110": "tat_Cyrl",
|
124 |
+
"111": "ajp_Arab",
|
125 |
+
"112": "dzo_Tibt",
|
126 |
+
"113": "pag_Latn",
|
127 |
+
"114": "kir_Cyrl",
|
128 |
+
"115": "sna_Latn",
|
129 |
+
"116": "zul_Latn",
|
130 |
+
"117": "kab_Latn",
|
131 |
+
"118": "fur_Latn",
|
132 |
+
"119": "ckb_Arab",
|
133 |
+
"120": "vie_Latn",
|
134 |
+
"121": "mal_Mlym",
|
135 |
+
"122": "bem_Latn",
|
136 |
+
"123": "som_Latn",
|
137 |
+
"124": "ars_Arab",
|
138 |
+
"125": "szl_Latn",
|
139 |
+
"126": "tgk_Cyrl",
|
140 |
+
"127": "tel_Telu",
|
141 |
+
"128": "quy_Latn",
|
142 |
+
"129": "deu_Latn",
|
143 |
+
"130": "bjn_Arab",
|
144 |
+
"131": "azj_Latn",
|
145 |
+
"132": "eus_Latn",
|
146 |
+
"133": "ces_Latn",
|
147 |
+
"134": "nld_Latn",
|
148 |
+
"135": "shn_Mymr",
|
149 |
+
"136": "bul_Cyrl",
|
150 |
+
"137": "kam_Latn",
|
151 |
+
"138": "kmb_Latn",
|
152 |
+
"139": "ron_Latn",
|
153 |
+
"140": "bho_Deva",
|
154 |
+
"141": "glg_Latn",
|
155 |
+
"142": "awa_Deva",
|
156 |
+
"143": "tha_Thai",
|
157 |
+
"144": "lim_Latn",
|
158 |
+
"145": "hat_Latn",
|
159 |
+
"146": "mag_Deva",
|
160 |
+
"147": "kon_Latn",
|
161 |
+
"148": "pbt_Arab",
|
162 |
+
"149": "kat_Geor",
|
163 |
+
"150": "khk_Cyrl",
|
164 |
+
"151": "arb_Arab",
|
165 |
+
"152": "knc_Arab",
|
166 |
+
"153": "kor_Hang",
|
167 |
+
"154": "oci_Latn",
|
168 |
+
"155": "lus_Latn",
|
169 |
+
"156": "ary_Arab",
|
170 |
+
"157": "epo_Latn",
|
171 |
+
"158": "pap_Latn",
|
172 |
+
"159": "ibo_Latn",
|
173 |
+
"160": "fao_Latn",
|
174 |
+
"161": "ben_Beng",
|
175 |
+
"162": "yue_Hant",
|
176 |
+
"163": "ceb_Latn",
|
177 |
+
"164": "luo_Latn",
|
178 |
+
"165": "srp_Cyrl",
|
179 |
+
"166": "ind_Latn",
|
180 |
+
"167": "slv_Latn",
|
181 |
+
"168": "min_Latn",
|
182 |
+
"169": "scn_Latn",
|
183 |
+
"170": "apc_Arab",
|
184 |
+
"171": "sin_Sinh",
|
185 |
+
"172": "mlt_Latn",
|
186 |
+
"173": "kea_Latn",
|
187 |
+
"174": "uig_Arab",
|
188 |
+
"175": "npi_Deva",
|
189 |
+
"176": "kas_Arab",
|
190 |
+
"177": "bug_Latn",
|
191 |
+
"178": "hne_Deva",
|
192 |
+
"179": "sat_Olck",
|
193 |
+
"180": "swh_Latn",
|
194 |
+
"181": "tso_Latn",
|
195 |
+
"182": "nno_Latn",
|
196 |
+
"183": "rus_Cyrl",
|
197 |
+
"184": "dik_Latn",
|
198 |
+
"185": "sun_Latn",
|
199 |
+
"186": "afr_Latn",
|
200 |
+
"187": "arz_Arab",
|
201 |
+
"188": "gle_Latn",
|
202 |
+
"189": "sot_Latn",
|
203 |
+
"190": "ewe_Latn",
|
204 |
+
"191": "fuv_Latn",
|
205 |
+
"192": "tum_Latn",
|
206 |
+
"193": "ilo_Latn",
|
207 |
+
"194": "cym_Latn",
|
208 |
+
"195": "tir_Ethi",
|
209 |
+
"196": "tzm_Tfng",
|
210 |
+
"197": "bod_Tibt",
|
211 |
+
"198": "tsn_Latn",
|
212 |
+
"199": "est_Latn",
|
213 |
+
"200": "jpn_Jpan"
|
214 |
+
},
|
215 |
+
"initializer_range": 0.02,
|
216 |
+
"intermediate_size": 768,
|
217 |
+
"label2id": {
|
218 |
+
"ace_Arab": 89,
|
219 |
+
"ace_Latn": 64,
|
220 |
+
"acm_Arab": 54,
|
221 |
+
"acq_Arab": 73,
|
222 |
+
"aeb_Arab": 74,
|
223 |
+
"afr_Latn": 186,
|
224 |
+
"ajp_Arab": 111,
|
225 |
+
"als_Latn": 33,
|
226 |
+
"amh_Ethi": 101,
|
227 |
+
"apc_Arab": 170,
|
228 |
+
"arb_Arab": 151,
|
229 |
+
"ars_Arab": 124,
|
230 |
+
"ary_Arab": 156,
|
231 |
+
"arz_Arab": 187,
|
232 |
+
"asm_Beng": 43,
|
233 |
+
"ast_Latn": 95,
|
234 |
+
"awa_Deva": 142,
|
235 |
+
"ayr_Latn": 94,
|
236 |
+
"azb_Arab": 38,
|
237 |
+
"azj_Latn": 131,
|
238 |
+
"bak_Cyrl": 26,
|
239 |
+
"bam_Latn": 18,
|
240 |
+
"ban_Latn": 71,
|
241 |
+
"bel_Cyrl": 23,
|
242 |
+
"bem_Latn": 122,
|
243 |
+
"ben_Beng": 161,
|
244 |
+
"bho_Deva": 140,
|
245 |
+
"bjn_Arab": 130,
|
246 |
+
"bjn_Latn": 4,
|
247 |
+
"bod_Tibt": 197,
|
248 |
+
"bos_Latn": 80,
|
249 |
+
"bug_Latn": 177,
|
250 |
+
"bul_Cyrl": 136,
|
251 |
+
"cat_Latn": 66,
|
252 |
+
"ceb_Latn": 163,
|
253 |
+
"ces_Latn": 133,
|
254 |
+
"cjk_Latn": 63,
|
255 |
+
"ckb_Arab": 119,
|
256 |
+
"crh_Latn": 78,
|
257 |
+
"cym_Latn": 194,
|
258 |
+
"dan_Latn": 48,
|
259 |
+
"deu_Latn": 129,
|
260 |
+
"dik_Latn": 184,
|
261 |
+
"dyu_Latn": 92,
|
262 |
+
"dzo_Tibt": 112,
|
263 |
+
"ell_Grek": 45,
|
264 |
+
"eng_Latn": 8,
|
265 |
+
"epo_Latn": 157,
|
266 |
+
"est_Latn": 199,
|
267 |
+
"eus_Latn": 132,
|
268 |
+
"ewe_Latn": 190,
|
269 |
+
"fao_Latn": 160,
|
270 |
+
"fij_Latn": 96,
|
271 |
+
"fin_Latn": 108,
|
272 |
+
"fon_Latn": 1,
|
273 |
+
"fra_Latn": 27,
|
274 |
+
"fur_Latn": 118,
|
275 |
+
"fuv_Latn": 191,
|
276 |
+
"gaz_Latn": 44,
|
277 |
+
"gla_Latn": 9,
|
278 |
+
"gle_Latn": 188,
|
279 |
+
"glg_Latn": 141,
|
280 |
+
"grn_Latn": 16,
|
281 |
+
"guj_Gujr": 60,
|
282 |
+
"hat_Latn": 145,
|
283 |
+
"hau_Latn": 85,
|
284 |
+
"heb_Hebr": 24,
|
285 |
+
"hin_Deva": 41,
|
286 |
+
"hne_Deva": 178,
|
287 |
+
"hrv_Latn": 77,
|
288 |
+
"hun_Latn": 68,
|
289 |
+
"hye_Armn": 100,
|
290 |
+
"ibo_Latn": 159,
|
291 |
+
"ilo_Latn": 193,
|
292 |
+
"ind_Latn": 166,
|
293 |
+
"isl_Latn": 21,
|
294 |
+
"ita_Latn": 61,
|
295 |
+
"jav_Latn": 102,
|
296 |
+
"jpn_Jpan": 200,
|
297 |
+
"kab_Latn": 117,
|
298 |
+
"kac_Latn": 12,
|
299 |
+
"kam_Latn": 137,
|
300 |
+
"kan_Knda": 31,
|
301 |
+
"kas_Arab": 176,
|
302 |
+
"kas_Deva": 22,
|
303 |
+
"kat_Geor": 149,
|
304 |
+
"kaz_Cyrl": 69,
|
305 |
+
"kbp_Latn": 34,
|
306 |
+
"kea_Latn": 173,
|
307 |
+
"khk_Cyrl": 150,
|
308 |
+
"khm_Khmr": 3,
|
309 |
+
"kik_Latn": 82,
|
310 |
+
"kin_Latn": 2,
|
311 |
+
"kir_Cyrl": 114,
|
312 |
+
"kmb_Latn": 138,
|
313 |
+
"kmr_Latn": 88,
|
314 |
+
"knc_Arab": 152,
|
315 |
+
"knc_Latn": 109,
|
316 |
+
"kon_Latn": 147,
|
317 |
+
"kor_Hang": 153,
|
318 |
+
"lao_Laoo": 105,
|
319 |
+
"lij_Latn": 91,
|
320 |
+
"lim_Latn": 144,
|
321 |
+
"lin_Latn": 35,
|
322 |
+
"lit_Latn": 0,
|
323 |
+
"lmo_Latn": 97,
|
324 |
+
"ltg_Latn": 59,
|
325 |
+
"ltz_Latn": 39,
|
326 |
+
"lua_Latn": 13,
|
327 |
+
"lug_Latn": 58,
|
328 |
+
"luo_Latn": 164,
|
329 |
+
"lus_Latn": 155,
|
330 |
+
"lvs_Latn": 10,
|
331 |
+
"mag_Deva": 146,
|
332 |
+
"mai_Deva": 104,
|
333 |
+
"mal_Mlym": 121,
|
334 |
+
"mar_Deva": 52,
|
335 |
+
"min_Latn": 168,
|
336 |
+
"mkd_Cyrl": 90,
|
337 |
+
"mlt_Latn": 172,
|
338 |
+
"mni_Beng": 53,
|
339 |
+
"mos_Latn": 93,
|
340 |
+
"mri_Latn": 19,
|
341 |
+
"mya_Mymr": 107,
|
342 |
+
"nld_Latn": 134,
|
343 |
+
"nno_Latn": 182,
|
344 |
+
"nob_Latn": 99,
|
345 |
+
"npi_Deva": 175,
|
346 |
+
"nso_Latn": 47,
|
347 |
+
"nus_Latn": 72,
|
348 |
+
"nya_Latn": 11,
|
349 |
+
"oci_Latn": 154,
|
350 |
+
"ory_Orya": 57,
|
351 |
+
"pag_Latn": 113,
|
352 |
+
"pan_Guru": 50,
|
353 |
+
"pap_Latn": 158,
|
354 |
+
"pbt_Arab": 148,
|
355 |
+
"pes_Arab": 49,
|
356 |
+
"plt_Latn": 87,
|
357 |
+
"pol_Latn": 70,
|
358 |
+
"por_Latn": 28,
|
359 |
+
"prs_Arab": 5,
|
360 |
+
"quy_Latn": 128,
|
361 |
+
"ron_Latn": 139,
|
362 |
+
"run_Latn": 7,
|
363 |
+
"rus_Cyrl": 183,
|
364 |
+
"sag_Latn": 103,
|
365 |
+
"san_Deva": 20,
|
366 |
+
"sat_Olck": 179,
|
367 |
+
"scn_Latn": 169,
|
368 |
+
"shn_Mymr": 135,
|
369 |
+
"sin_Sinh": 171,
|
370 |
+
"slk_Latn": 76,
|
371 |
+
"slv_Latn": 167,
|
372 |
+
"smo_Latn": 32,
|
373 |
+
"sna_Latn": 115,
|
374 |
+
"snd_Arab": 84,
|
375 |
+
"som_Latn": 123,
|
376 |
+
"sot_Latn": 189,
|
377 |
+
"spa_Latn": 75,
|
378 |
+
"srd_Latn": 55,
|
379 |
+
"srp_Cyrl": 165,
|
380 |
+
"ssw_Latn": 81,
|
381 |
+
"sun_Latn": 185,
|
382 |
+
"swe_Latn": 62,
|
383 |
+
"swh_Latn": 180,
|
384 |
+
"szl_Latn": 125,
|
385 |
+
"tam_Taml": 86,
|
386 |
+
"taq_Latn": 65,
|
387 |
+
"taq_Tfng": 46,
|
388 |
+
"tat_Cyrl": 110,
|
389 |
+
"tel_Telu": 127,
|
390 |
+
"tgk_Cyrl": 126,
|
391 |
+
"tgl_Latn": 42,
|
392 |
+
"tha_Thai": 143,
|
393 |
+
"tir_Ethi": 195,
|
394 |
+
"tpi_Latn": 15,
|
395 |
+
"tsn_Latn": 198,
|
396 |
+
"tso_Latn": 181,
|
397 |
+
"tuk_Latn": 14,
|
398 |
+
"tum_Latn": 192,
|
399 |
+
"tur_Latn": 79,
|
400 |
+
"twi_Latn": 40,
|
401 |
+
"tzm_Tfng": 196,
|
402 |
+
"uig_Arab": 174,
|
403 |
+
"ukr_Cyrl": 29,
|
404 |
+
"umb_Latn": 30,
|
405 |
+
"urd_Arab": 36,
|
406 |
+
"uzn_Latn": 106,
|
407 |
+
"vec_Latn": 56,
|
408 |
+
"vie_Latn": 120,
|
409 |
+
"war_Latn": 51,
|
410 |
+
"wol_Latn": 6,
|
411 |
+
"xho_Latn": 17,
|
412 |
+
"ydd_Hebr": 83,
|
413 |
+
"yor_Latn": 37,
|
414 |
+
"yue_Hant": 162,
|
415 |
+
"zho_Hans": 98,
|
416 |
+
"zho_Hant": 25,
|
417 |
+
"zsm_Latn": 67,
|
418 |
+
"zul_Latn": 116
|
419 |
+
},
|
420 |
+
"layer_norm_eps": 1e-12,
|
421 |
+
"max_position_embeddings": 512,
|
422 |
+
"model_type": "bert",
|
423 |
+
"num_attention_heads": 6,
|
424 |
+
"num_hidden_layers": 4,
|
425 |
+
"pad_token_id": 3,
|
426 |
+
"position_embedding_type": "absolute",
|
427 |
+
"problem_type": "single_label_classification",
|
428 |
+
"torch_dtype": "float32",
|
429 |
+
"transformers_version": "4.48.3",
|
430 |
+
"type_vocab_size": 2,
|
431 |
+
"use_cache": true,
|
432 |
+
"vocab_size": 50257
|
433 |
+
}
|
language_detection.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4ccd30df1196c19d4b227bd82ca4d79aca9cd0c74c9622e3ca80288ff9bb304
|
3 |
+
size 97945176
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec3137634f58a55ae6127d61d12d4aa05c92380852909c1160e03f82f51a8a68
|
3 |
+
size 97838484
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
to_onnx.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
+
from onnxruntime.quantization import quantize_dynamic, quantize_static, QuantType
|
5 |
+
from onnxruntime.quantization.calibrate import CalibrationDataReader
|
6 |
+
import onnx
|
7 |
+
import time
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
def ensure_directory(path):
|
11 |
+
"""Create directory if it doesn't exist"""
|
12 |
+
abs_path = os.path.abspath(path)
|
13 |
+
if not os.path.exists(abs_path):
|
14 |
+
os.makedirs(abs_path)
|
15 |
+
print(f"Created directory: {abs_path}")
|
16 |
+
return abs_path
|
17 |
+
|
18 |
+
def verify_file_exists(file_path, timeout=5):
|
19 |
+
"""Verify that a file exists and is not empty"""
|
20 |
+
start_time = time.time()
|
21 |
+
while time.time() - start_time < timeout:
|
22 |
+
if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
|
23 |
+
return True
|
24 |
+
time.sleep(0.1)
|
25 |
+
return False
|
26 |
+
|
27 |
+
def export_to_onnx(model, tokenizer, save_path):
|
28 |
+
"""Export model to ONNX format"""
|
29 |
+
try:
|
30 |
+
# Create a dummy input for the model
|
31 |
+
dummy_input = tokenizer("This is a sample input", return_tensors="pt")
|
32 |
+
|
33 |
+
# Export the model to ONNX
|
34 |
+
torch.onnx.export(
|
35 |
+
model,
|
36 |
+
(dummy_input["input_ids"], dummy_input["attention_mask"]),
|
37 |
+
save_path,
|
38 |
+
opset_version=14,
|
39 |
+
input_names=["input_ids", "attention_mask"],
|
40 |
+
output_names=["output"],
|
41 |
+
dynamic_axes={
|
42 |
+
"input_ids": {0: "batch_size"},
|
43 |
+
"attention_mask": {0: "batch_size"},
|
44 |
+
"output": {0: "batch_size"}
|
45 |
+
}
|
46 |
+
)
|
47 |
+
|
48 |
+
# Verify the file was created
|
49 |
+
if verify_file_exists(save_path):
|
50 |
+
print(f"Successfully exported ONNX model to {save_path}")
|
51 |
+
return True
|
52 |
+
else:
|
53 |
+
print(f"Failed to verify ONNX model at {save_path}")
|
54 |
+
return False
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error exporting to ONNX: {str(e)}")
|
57 |
+
return False
|
58 |
+
|
59 |
+
def create_calibration_dataset(tokenizer, max_length=512):
|
60 |
+
"""Generate calibration dataset for static quantization with padding"""
|
61 |
+
samples = [
|
62 |
+
"This is an English sentence.",
|
63 |
+
"Dies ist ein deutscher Satz.",
|
64 |
+
"C'est une phrase française.",
|
65 |
+
"Esta es una frase en español.",
|
66 |
+
"这是一个中文句子。",
|
67 |
+
"これは日本語の文章です。"
|
68 |
+
]
|
69 |
+
|
70 |
+
# Tokenize with padding and truncation
|
71 |
+
encoded_samples = []
|
72 |
+
for text in samples:
|
73 |
+
encoded = tokenizer(
|
74 |
+
text,
|
75 |
+
padding='max_length',
|
76 |
+
max_length=max_length,
|
77 |
+
truncation=True,
|
78 |
+
return_tensors="pt"
|
79 |
+
)
|
80 |
+
encoded_samples.append({
|
81 |
+
'input_ids': encoded['input_ids'],
|
82 |
+
'attention_mask': encoded['attention_mask']
|
83 |
+
})
|
84 |
+
|
85 |
+
return encoded_samples
|
86 |
+
|
87 |
+
class CalibrationLoader(CalibrationDataReader):
|
88 |
+
def __init__(self, calibration_data):
|
89 |
+
self.calibration_data = calibration_data
|
90 |
+
self.current_index = 0
|
91 |
+
|
92 |
+
def get_next(self):
|
93 |
+
if self.current_index >= len(self.calibration_data):
|
94 |
+
return None
|
95 |
+
|
96 |
+
current_data = self.calibration_data[self.current_index]
|
97 |
+
self.current_index += 1
|
98 |
+
|
99 |
+
# Ensure we're returning numpy arrays with the correct shape
|
100 |
+
return {
|
101 |
+
'input_ids': current_data['input_ids'].numpy(),
|
102 |
+
'attention_mask': current_data['attention_mask'].numpy()
|
103 |
+
}
|
104 |
+
|
105 |
+
def rewind(self):
|
106 |
+
self.current_index = 0
|
107 |
+
|
108 |
+
def export_to_onnx(model, tokenizer, save_path, max_length=512):
|
109 |
+
"""Export model to ONNX format with fixed dimensions"""
|
110 |
+
try:
|
111 |
+
# Create a dummy input with fixed dimensions
|
112 |
+
dummy_input = tokenizer(
|
113 |
+
"This is a sample input",
|
114 |
+
padding='max_length',
|
115 |
+
max_length=max_length,
|
116 |
+
truncation=True,
|
117 |
+
return_tensors="pt"
|
118 |
+
)
|
119 |
+
|
120 |
+
# Export the model to ONNX
|
121 |
+
torch.onnx.export(
|
122 |
+
model,
|
123 |
+
(dummy_input["input_ids"], dummy_input["attention_mask"]),
|
124 |
+
save_path,
|
125 |
+
opset_version=14,
|
126 |
+
input_names=["input_ids", "attention_mask"],
|
127 |
+
output_names=["output"],
|
128 |
+
dynamic_axes={
|
129 |
+
"input_ids": {0: "batch_size"},
|
130 |
+
"attention_mask": {0: "batch_size"}
|
131 |
+
}
|
132 |
+
)
|
133 |
+
|
134 |
+
if verify_file_exists(save_path):
|
135 |
+
print(f"Successfully exported ONNX model to {save_path}")
|
136 |
+
return True
|
137 |
+
else:
|
138 |
+
print(f"Failed to verify ONNX model at {save_path}")
|
139 |
+
return False
|
140 |
+
except Exception as e:
|
141 |
+
print(f"Error exporting to ONNX: {str(e)}")
|
142 |
+
return False
|
143 |
+
|
144 |
+
def quantize_model(base_onnx_path, onnx_dir, config_name, calibration_dataset=None):
|
145 |
+
"""
|
146 |
+
Quantize ONNX model using either dynamic or static quantization.
|
147 |
+
|
148 |
+
Args:
|
149 |
+
base_onnx_path (str): Path to the base ONNX model
|
150 |
+
onnx_dir (str): Directory to save quantized models
|
151 |
+
config_name (str): Type of quantization ('dynamic' or 'static')
|
152 |
+
calibration_dataset (list, optional): Dataset for static quantization calibration
|
153 |
+
"""
|
154 |
+
try:
|
155 |
+
quantized_model_path = os.path.join(onnx_dir, f"model_{config_name}_quantized.onnx")
|
156 |
+
|
157 |
+
if config_name == "dynamic":
|
158 |
+
print(f"\nPerforming dynamic quantization...")
|
159 |
+
quantize_dynamic(
|
160 |
+
model_input=base_onnx_path,
|
161 |
+
model_output=quantized_model_path,
|
162 |
+
weight_type=QuantType.QUInt8
|
163 |
+
)
|
164 |
+
|
165 |
+
elif config_name == "static" and calibration_dataset is not None:
|
166 |
+
print(f"\nPerforming static quantization...")
|
167 |
+
calibration_loader = CalibrationLoader(calibration_dataset)
|
168 |
+
quantize_static(
|
169 |
+
model_input=base_onnx_path,
|
170 |
+
model_output=quantized_model_path,
|
171 |
+
calibration_data_reader=calibration_loader,
|
172 |
+
quant_format=QuantType.QUInt8
|
173 |
+
)
|
174 |
+
|
175 |
+
else:
|
176 |
+
print(f"Invalid quantization configuration: {config_name}")
|
177 |
+
return False
|
178 |
+
|
179 |
+
# Verify the quantized model exists
|
180 |
+
if verify_file_exists(quantized_model_path):
|
181 |
+
print(f"Successfully created {config_name} quantized model at {quantized_model_path}")
|
182 |
+
|
183 |
+
# Print file sizes for comparison
|
184 |
+
base_size = os.path.getsize(base_onnx_path) / (1024 * 1024) # Convert to MB
|
185 |
+
quantized_size = os.path.getsize(quantized_model_path) / (1024 * 1024) # Convert to MB
|
186 |
+
|
187 |
+
print(f"Original model size: {base_size:.2f} MB")
|
188 |
+
print(f"Quantized model size: {quantized_size:.2f} MB")
|
189 |
+
print(f"Size reduction: {((base_size - quantized_size) / base_size * 100):.2f}%")
|
190 |
+
|
191 |
+
return True
|
192 |
+
else:
|
193 |
+
print(f"Failed to verify quantized model at {quantized_model_path}")
|
194 |
+
return False
|
195 |
+
|
196 |
+
except Exception as e:
|
197 |
+
print(f"Error during {config_name} quantization: {str(e)}")
|
198 |
+
return False
|
199 |
+
|
200 |
+
|
201 |
+
def main():
|
202 |
+
# Get absolute paths
|
203 |
+
current_dir = os.path.abspath(os.getcwd())
|
204 |
+
onnx_dir = ensure_directory(os.path.join(current_dir, "onnx"))
|
205 |
+
base_onnx_path = os.path.join(onnx_dir, "model.onnx")
|
206 |
+
|
207 |
+
print(f"Working directory: {current_dir}")
|
208 |
+
print(f"ONNX directory: {onnx_dir}")
|
209 |
+
print(f"Base ONNX model path: {base_onnx_path}")
|
210 |
+
|
211 |
+
# Step 1: Load model and tokenizer
|
212 |
+
print("\nLoading model and tokenizer...")
|
213 |
+
model_name = "alexneakameni/language_detection"
|
214 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
215 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
216 |
+
|
217 |
+
# Get the model's default max_length
|
218 |
+
max_length = tokenizer.model_max_length
|
219 |
+
|
220 |
+
# Step 2: Export base ONNX model
|
221 |
+
if not export_to_onnx(model, tokenizer, base_onnx_path, max_length):
|
222 |
+
print("Failed to export base ONNX model. Exiting.")
|
223 |
+
return
|
224 |
+
|
225 |
+
# Verify the ONNX model
|
226 |
+
try:
|
227 |
+
print(f"Verifying ONNX model at: {base_onnx_path}")
|
228 |
+
onnx_model = onnx.load(base_onnx_path)
|
229 |
+
print("Successfully verified ONNX model")
|
230 |
+
except Exception as e:
|
231 |
+
print(f"Error verifying ONNX model: {str(e)}")
|
232 |
+
return
|
233 |
+
|
234 |
+
# Step 3: Create calibration dataset
|
235 |
+
calibration_dataset = create_calibration_dataset(tokenizer, max_length)
|
236 |
+
|
237 |
+
# Step 4: Create quantized versions
|
238 |
+
print("\nCreating quantized versions...")
|
239 |
+
|
240 |
+
# Dynamic quantization
|
241 |
+
quantize_model(
|
242 |
+
base_onnx_path=base_onnx_path,
|
243 |
+
onnx_dir=onnx_dir,
|
244 |
+
config_name="dynamic"
|
245 |
+
)
|
246 |
+
|
247 |
+
# Static quantization
|
248 |
+
quantize_model(
|
249 |
+
base_onnx_path=base_onnx_path,
|
250 |
+
onnx_dir=onnx_dir,
|
251 |
+
config_name="static",
|
252 |
+
calibration_dataset=calibration_dataset
|
253 |
+
)
|
254 |
+
|
255 |
+
if __name__ == "__main__":
|
256 |
+
main()
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[UNK]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[PAD]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "BertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|