Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- OpenAssistant/oasst1
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
---
|
6 |
+
|
7 |
+
# Falcon-40b-chat-oasst1
|
8 |
+
|
9 |
+
Falcon-40b-chat-oasst1 is a chatbot-like model for dialogue generation. It was built by fine-tuning [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b) on the [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) dataset.
|
10 |
+
This model was fine-tuned in 4-bit using 🤗 [peft](https://github.com/huggingface/peft) adapters, [transformers](https://github.com/huggingface/transformers), and [bitsandbytes](https://github.com/TimDettmers/bitsandbytes).
|
11 |
+
- The training relied on a recent method called "Low Rank Adapters" ([LoRA](https://arxiv.org/pdf/2106.09685.pdf)), instead of fine-tuning the entire model you just have to fine-tune adapters and load them properly inside the model.
|
12 |
+
- Training took approximately 10 hours and was executed on a workstation with a single NVIDIA A100-SXM 40GB GPU (via Google Colab).
|
13 |
+
- See attached [Notebook](https://huggingface.co/dfurman/falcon-40b-chat-oasst1/blob/main/finetune_falcon40b_oasst1_with_bnb_peft.ipynb) for the code (and hyperparams) used to train the model.
|
14 |
+
|
15 |
+
## Model Summary
|
16 |
+
|
17 |
+
- **Model Type:** Causal decoder-only
|
18 |
+
- **Language(s) (NLP):** English (primarily)
|
19 |
+
- **Base Model:** [Falcon-40B](https://huggingface.co/tiiuae/falcon-40b) (License: [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-40b#license), commercial use ok-ed)
|
20 |
+
- **Dataset:** [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) (License: [Apache 2.0](https://huggingface.co/datasets/OpenAssistant/oasst1/blob/main/LICENSE), commercial use ok-ed)
|
21 |
+
|
22 |
+
### Model Date
|
23 |
+
|
24 |
+
May 30, 2023
|
25 |
+
|
26 |
+
## Quick Start
|
27 |
+
|
28 |
+
To prompt the chat model, use the following format:
|
29 |
+
|
30 |
+
```
|
31 |
+
<human>: [Instruction]
|
32 |
+
<bot>:
|
33 |
+
```
|
34 |
+
|
35 |
+
### Example Dialogue
|
36 |
+
|
37 |
+
**Prompter**:
|
38 |
+
|
39 |
+
```
|
40 |
+
"""<human>: My name is Daniel. Write a short email to my closest friends inviting them to come to my home on Friday for a dinner party, I will make the food but tell them to BYOB.
|
41 |
+
<bot>:"""
|
42 |
+
```
|
43 |
+
|
44 |
+
**Falcon-40b-chat-oasst1**:
|
45 |
+
|
46 |
+
>Coming
|
47 |
+
|
48 |
+
**Prompter**:
|
49 |
+
```
|
50 |
+
<human>: Create a list of things to do in San Francisco.\n
|
51 |
+
<bot>:
|
52 |
+
```
|
53 |
+
|
54 |
+
**Falcon-40b-chat-oasst1**:
|
55 |
+
>Coming
|
56 |
+
|
57 |
+
### Direct Use
|
58 |
+
|
59 |
+
This model has been finetuned on conversation trees from [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) and should only be used on data of a similar nature.
|
60 |
+
|
61 |
+
### Out-of-Scope Use
|
62 |
+
|
63 |
+
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
|
64 |
+
|
65 |
+
## Bias, Risks, and Limitations
|
66 |
+
|
67 |
+
This model is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
|
68 |
+
|
69 |
+
### Recommendations
|
70 |
+
|
71 |
+
We recommend users of this model to develop guardrails and to take appropriate precautions for any production use.
|
72 |
+
|
73 |
+
## How to Get Started with the Model
|
74 |
+
|
75 |
+
### Setup
|
76 |
+
```python
|
77 |
+
# Install and import packages
|
78 |
+
!pip install -q -U bitsandbytes loralib einops
|
79 |
+
!pip install -q -U git+https://github.com/huggingface/transformers.git
|
80 |
+
!pip install -q -U git+https://github.com/huggingface/peft.git
|
81 |
+
!pip install -q -U git+https://github.com/huggingface/accelerate.git
|
82 |
+
|
83 |
+
import torch
|
84 |
+
from peft import PeftModel, PeftConfig
|
85 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
86 |
+
```
|
87 |
+
|
88 |
+
### GPU Inference in 4-bit
|
89 |
+
|
90 |
+
This requires a GPU with at least 27GB memory.
|
91 |
+
|
92 |
+
```python
|
93 |
+
# load the model
|
94 |
+
peft_model_id = "dfurman/falcon-40b-chat-oasst1"
|
95 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
96 |
+
|
97 |
+
bnb_config = BitsAndBytesConfig(
|
98 |
+
load_in_4bit=True,
|
99 |
+
bnb_4bit_use_double_quant=True,
|
100 |
+
bnb_4bit_quant_type="nf4",
|
101 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
102 |
+
)
|
103 |
+
|
104 |
+
model = AutoModelForCausalLM.from_pretrained(
|
105 |
+
config.base_model_name_or_path,
|
106 |
+
return_dict=True,
|
107 |
+
quantization_config=bnb_config,
|
108 |
+
device_map={"":0},
|
109 |
+
use_auth_token=True,
|
110 |
+
trust_remote_code=True,
|
111 |
+
)
|
112 |
+
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
114 |
+
tokenizer.pad_token = tokenizer.eos_token
|
115 |
+
|
116 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
117 |
+
```
|
118 |
+
|
119 |
+
```python
|
120 |
+
# run the model
|
121 |
+
prompt = """<human>: My name is Daniel. Write a long email to my closest friends inviting them to come to my home on Friday for a dinner party, I will make the food but tell them to BYOB.
|
122 |
+
<bot>:"""
|
123 |
+
|
124 |
+
batch = tokenizer(
|
125 |
+
prompt,
|
126 |
+
padding=True,
|
127 |
+
truncation=True,
|
128 |
+
return_tensors='pt'
|
129 |
+
)
|
130 |
+
batch = batch.to('cuda:0')
|
131 |
+
|
132 |
+
with torch.cuda.amp.autocast():
|
133 |
+
output_tokens = model.generate(
|
134 |
+
input_ids = batch.input_ids,
|
135 |
+
max_new_tokens=200,
|
136 |
+
temperature=0.7,
|
137 |
+
top_p=0.7,
|
138 |
+
num_return_sequences=1,
|
139 |
+
pad_token_id=tokenizer.eos_token_id,
|
140 |
+
eos_token_id=tokenizer.eos_token_id,
|
141 |
+
)
|
142 |
+
|
143 |
+
# Inspect outputs
|
144 |
+
print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
|
145 |
+
```
|
146 |
+
|
147 |
+
## Reproducibility
|
148 |
+
|
149 |
+
- See attached [Notebook](https://huggingface.co/dfurman/falcon-40b-chat-oasst1/blob/main/finetune_falcon40b_oasst1_with_bnb_peft.ipynb) for the code (and hyperparams) used to train the model.
|
150 |
+
|
151 |
+
### CUDA Info
|
152 |
+
|
153 |
+
- CUDA Version: 12.0
|
154 |
+
- GPU Name: NVIDIA A100-SXM
|
155 |
+
- Max Memory: {0: "37GB"}
|
156 |
+
- Device Map: {"": 0}
|
157 |
+
|
158 |
+
### Package Versions Employed
|
159 |
+
|
160 |
+
- `torch`==2.0.1+cu118
|
161 |
+
- `transformers`==4.30.0.dev0
|
162 |
+
- `peft`==0.4.0.dev0
|
163 |
+
- `accelerate`==0.19.0
|
164 |
+
- `bitsandbytes`==0.39.0
|
165 |
+
- `einops`==0.6.1
|