hlky
commited on
new handler
Browse files- handler.py +46 -59
handler.py
CHANGED
|
@@ -1,85 +1,72 @@
|
|
| 1 |
-
from typing import
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
-
|
| 4 |
from diffusers import AutoencoderKL
|
| 5 |
from diffusers.image_processor import VaeImageProcessor
|
| 6 |
|
|
|
|
| 7 |
class EndpointHandler:
|
| 8 |
def __init__(self, path=""):
|
| 9 |
self.device = "cuda"
|
| 10 |
self.dtype = torch.float16
|
| 11 |
-
self.vae = AutoencoderKL.from_pretrained(path, torch_dtype=self.dtype).to(self.device, self.dtype).eval()
|
| 12 |
|
| 13 |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 14 |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 15 |
|
| 16 |
@torch.no_grad()
|
| 17 |
-
def __call__(self, data
|
| 18 |
"""
|
| 19 |
Args:
|
| 20 |
data (:obj:):
|
| 21 |
includes the input data and the parameters for the inference.
|
| 22 |
"""
|
| 23 |
-
tensor = data["inputs"]
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
if
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
DTYPE_MAP = {
|
| 32 |
-
"float16": torch.float16,
|
| 33 |
-
"float32": torch.float32,
|
| 34 |
-
"bfloat16": torch.bfloat16,
|
| 35 |
-
}
|
| 36 |
|
| 37 |
-
|
| 38 |
-
dtype = DTYPE_MAP.get(parameters.get("dtype"))
|
| 39 |
-
tensor = torch.frombuffer(bytearray(tensor), dtype=dtype).reshape(shape)
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
self.vae = self.vae.to(torch.float32)
|
| 46 |
-
tensor = tensor.to(self.device, torch.float32)
|
| 47 |
-
else:
|
| 48 |
-
tensor = tensor.to(self.device, self.dtype)
|
| 49 |
-
|
| 50 |
-
# unscale/denormalize the latents
|
| 51 |
-
# denormalize with the mean and std if available and not None
|
| 52 |
-
has_latents_mean = (
|
| 53 |
-
hasattr(self.vae.config, "latents_mean")
|
| 54 |
-
and self.vae.config.latents_mean is not None
|
| 55 |
-
)
|
| 56 |
-
has_latents_std = (
|
| 57 |
-
hasattr(self.vae.config, "latents_std")
|
| 58 |
-
and self.vae.config.latents_std is not None
|
| 59 |
-
)
|
| 60 |
-
if has_latents_mean and has_latents_std:
|
| 61 |
-
latents_mean = (
|
| 62 |
-
torch.tensor(self.vae.config.latents_mean)
|
| 63 |
-
.view(1, 4, 1, 1)
|
| 64 |
-
.to(tensor.device, tensor.dtype)
|
| 65 |
-
)
|
| 66 |
-
latents_std = (
|
| 67 |
-
torch.tensor(self.vae.config.latents_std)
|
| 68 |
-
.view(1, 4, 1, 1)
|
| 69 |
-
.to(tensor.device, tensor.dtype)
|
| 70 |
)
|
| 71 |
-
|
| 72 |
-
|
|
|
|
| 73 |
)
|
| 74 |
-
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
with torch.no_grad():
|
| 78 |
-
image = self.vae.decode(tensor, return_dict=False)[0]
|
| 79 |
-
|
| 80 |
-
if needs_upcasting:
|
| 81 |
-
self.vae.to(dtype=torch.float16)
|
| 82 |
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
return image
|
|
|
|
| 1 |
+
from typing import cast, Union
|
| 2 |
+
|
| 3 |
+
import PIL.Image
|
| 4 |
import torch
|
| 5 |
+
|
| 6 |
from diffusers import AutoencoderKL
|
| 7 |
from diffusers.image_processor import VaeImageProcessor
|
| 8 |
|
| 9 |
+
|
| 10 |
class EndpointHandler:
|
| 11 |
def __init__(self, path=""):
|
| 12 |
self.device = "cuda"
|
| 13 |
self.dtype = torch.float16
|
| 14 |
+
self.vae = cast(AutoencoderKL, AutoencoderKL.from_pretrained(path, torch_dtype=self.dtype).to(self.device, self.dtype).eval())
|
| 15 |
|
| 16 |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 17 |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 18 |
|
| 19 |
@torch.no_grad()
|
| 20 |
+
def __call__(self, data) -> Union[torch.Tensor, PIL.Image.Image]:
|
| 21 |
"""
|
| 22 |
Args:
|
| 23 |
data (:obj:):
|
| 24 |
includes the input data and the parameters for the inference.
|
| 25 |
"""
|
| 26 |
+
tensor = cast(torch.Tensor, data["inputs"])
|
| 27 |
+
parameters = cast(dict, data.get("parameters", {}))
|
| 28 |
+
do_scaling = cast(bool, parameters.get("do_scaling", True))
|
| 29 |
+
output_type = cast(str, parameters.get("output_type", "pil"))
|
| 30 |
+
partial_postprocess = cast(bool, parameters.get("partial_postprocess", False))
|
| 31 |
+
if partial_postprocess and output_type != "pt":
|
| 32 |
+
output_type = "pt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
tensor = tensor.to(self.device, self.dtype)
|
|
|
|
|
|
|
| 35 |
|
| 36 |
+
if do_scaling:
|
| 37 |
+
has_latents_mean = (
|
| 38 |
+
hasattr(self.vae.config, "latents_mean")
|
| 39 |
+
and self.vae.config.latents_mean is not None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
)
|
| 41 |
+
has_latents_std = (
|
| 42 |
+
hasattr(self.vae.config, "latents_std")
|
| 43 |
+
and self.vae.config.latents_std is not None
|
| 44 |
)
|
| 45 |
+
if has_latents_mean and has_latents_std:
|
| 46 |
+
latents_mean = (
|
| 47 |
+
torch.tensor(self.vae.config.latents_mean)
|
| 48 |
+
.view(1, 4, 1, 1)
|
| 49 |
+
.to(tensor.device, tensor.dtype)
|
| 50 |
+
)
|
| 51 |
+
latents_std = (
|
| 52 |
+
torch.tensor(self.vae.config.latents_std)
|
| 53 |
+
.view(1, 4, 1, 1)
|
| 54 |
+
.to(tensor.device, tensor.dtype)
|
| 55 |
+
)
|
| 56 |
+
tensor = (
|
| 57 |
+
tensor * latents_std / self.vae.config.scaling_factor + latents_mean
|
| 58 |
+
)
|
| 59 |
+
else:
|
| 60 |
+
tensor = tensor / self.vae.config.scaling_factor
|
| 61 |
|
| 62 |
with torch.no_grad():
|
| 63 |
+
image = cast(torch.Tensor, self.vae.decode(tensor, return_dict=False)[0])
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
if partial_postprocess:
|
| 66 |
+
image = (image * 0.5 + 0.5).clamp(0, 1)
|
| 67 |
+
image = image.permute(0, 2, 3, 1).contiguous().float()
|
| 68 |
+
image = (image * 255).round().to(torch.uint8)
|
| 69 |
+
elif output_type == "pil":
|
| 70 |
+
image = cast(PIL.Image.Image, self.image_processor.postprocess(image, output_type="pil")[0])
|
| 71 |
|
| 72 |
+
return image
|