dyang39 commited on
Commit
e23046d
·
verified ·
1 Parent(s): ac78774

Upload modeling_internvl_chat.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_internvl_chat.py +360 -0
modeling_internvl_chat.py ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch.utils.checkpoint
11
+ import transformers
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss
14
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
15
+ LlamaTokenizer)
16
+ from transformers.modeling_outputs import CausalLMOutputWithPast
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import ModelOutput, logging
19
+
20
+ from .configuration_internvl_chat import InternVLChatConfig
21
+ from .conversation import get_conv_template
22
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
23
+ from .modeling_internlm2 import InternLM2ForCausalLM
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ def version_cmp(v1, v2, op='eq'):
29
+ import operator
30
+
31
+ from packaging import version
32
+ op_func = getattr(operator, op)
33
+ return op_func(version.parse(v1), version.parse(v2))
34
+
35
+
36
+ class InternVLChatModel(PreTrainedModel):
37
+ config_class = InternVLChatConfig
38
+ main_input_name = 'pixel_values'
39
+ base_model_prefix = 'language_model'
40
+ _supports_flash_attn_2 = True
41
+ supports_gradient_checkpointing = True
42
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
43
+
44
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
45
+ super().__init__(config)
46
+
47
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
48
+ image_size = config.force_image_size or config.vision_config.image_size
49
+ patch_size = config.vision_config.patch_size
50
+ self.patch_size = patch_size
51
+ self.select_layer = config.select_layer
52
+ self.template = config.template
53
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
54
+ self.downsample_ratio = config.downsample_ratio
55
+ self.ps_version = config.ps_version
56
+ use_flash_attn = use_flash_attn if has_flash_attn else False
57
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
58
+ config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
59
+
60
+ logger.info(f'num_image_token: {self.num_image_token}')
61
+ logger.info(f'ps_version: {self.ps_version}')
62
+ if vision_model is not None:
63
+ self.vision_model = vision_model
64
+ else:
65
+ self.vision_model = InternVisionModel(config.vision_config)
66
+ if language_model is not None:
67
+ self.language_model = language_model
68
+ else:
69
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
70
+ self.language_model = LlamaForCausalLM(config.llm_config)
71
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
72
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
73
+ else:
74
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
75
+
76
+ vit_hidden_size = config.vision_config.hidden_size
77
+ llm_hidden_size = config.llm_config.hidden_size
78
+
79
+ self.mlp1 = nn.Sequential(
80
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
81
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
82
+ nn.GELU(),
83
+ nn.Linear(llm_hidden_size, llm_hidden_size)
84
+ )
85
+
86
+ self.img_context_token_id = None
87
+ self.conv_template = get_conv_template(self.template)
88
+ self.system_message = self.conv_template.system_message
89
+
90
+ def forward(
91
+ self,
92
+ pixel_values: torch.FloatTensor,
93
+ input_ids: torch.LongTensor = None,
94
+ attention_mask: Optional[torch.Tensor] = None,
95
+ position_ids: Optional[torch.LongTensor] = None,
96
+ image_flags: Optional[torch.LongTensor] = None,
97
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
98
+ labels: Optional[torch.LongTensor] = None,
99
+ use_cache: Optional[bool] = None,
100
+ output_attentions: Optional[bool] = None,
101
+ output_hidden_states: Optional[bool] = None,
102
+ return_dict: Optional[bool] = None,
103
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
104
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
105
+
106
+ image_flags = image_flags.squeeze(-1)
107
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
108
+
109
+ vit_embeds = self.extract_feature(pixel_values)
110
+ vit_embeds = vit_embeds[image_flags == 1]
111
+ vit_batch_size = pixel_values.shape[0]
112
+
113
+ B, N, C = input_embeds.shape
114
+ input_embeds = input_embeds.reshape(B * N, C)
115
+
116
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
117
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
118
+
119
+ input_ids = input_ids.reshape(B * N)
120
+ selected = (input_ids == self.img_context_token_id)
121
+ try:
122
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
123
+ except Exception as e:
124
+ vit_embeds = vit_embeds.reshape(-1, C)
125
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
126
+ f'vit_embeds.shape={vit_embeds.shape}')
127
+ n_token = selected.sum()
128
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
129
+
130
+ input_embeds = input_embeds.reshape(B, N, C)
131
+
132
+ outputs = self.language_model(
133
+ inputs_embeds=input_embeds,
134
+ attention_mask=attention_mask,
135
+ position_ids=position_ids,
136
+ past_key_values=past_key_values,
137
+ use_cache=use_cache,
138
+ output_attentions=output_attentions,
139
+ output_hidden_states=output_hidden_states,
140
+ return_dict=return_dict,
141
+ )
142
+ logits = outputs.logits
143
+
144
+ loss = None
145
+ if labels is not None:
146
+ # Shift so that tokens < n predict n
147
+ shift_logits = logits[..., :-1, :].contiguous()
148
+ shift_labels = labels[..., 1:].contiguous()
149
+ # Flatten the tokens
150
+ loss_fct = CrossEntropyLoss()
151
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
152
+ shift_labels = shift_labels.view(-1)
153
+ # Enable model parallelism
154
+ shift_labels = shift_labels.to(shift_logits.device)
155
+ loss = loss_fct(shift_logits, shift_labels)
156
+
157
+ if not return_dict:
158
+ output = (logits,) + outputs[1:]
159
+ return (loss,) + output if loss is not None else output
160
+
161
+ return CausalLMOutputWithPast(
162
+ loss=loss,
163
+ logits=logits,
164
+ past_key_values=outputs.past_key_values,
165
+ hidden_states=outputs.hidden_states,
166
+ attentions=outputs.attentions,
167
+ )
168
+
169
+ def pixel_shuffle(self, x, scale_factor=0.5):
170
+ n, w, h, c = x.size()
171
+ # N, W, H, C --> N, W, H * scale, C // scale
172
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
173
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
174
+ x = x.permute(0, 2, 1, 3).contiguous()
175
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
176
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
177
+ int(c / (scale_factor * scale_factor)))
178
+ if self.ps_version == 'v1':
179
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
180
+ 'which results in a transposed image.')
181
+ else:
182
+ x = x.permute(0, 2, 1, 3).contiguous()
183
+ return x
184
+
185
+ def extract_feature(self, pixel_values):
186
+ if self.select_layer == -1:
187
+ vit_embeds = self.vision_model(
188
+ pixel_values=pixel_values,
189
+ output_hidden_states=False,
190
+ return_dict=True).last_hidden_state
191
+ else:
192
+ vit_embeds = self.vision_model(
193
+ pixel_values=pixel_values,
194
+ output_hidden_states=True,
195
+ return_dict=True).hidden_states[self.select_layer]
196
+ vit_embeds = vit_embeds[:, 1:, :]
197
+
198
+ h = w = int(vit_embeds.shape[1] ** 0.5)
199
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
200
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
201
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
202
+ vit_embeds = self.mlp1(vit_embeds)
203
+ return vit_embeds
204
+
205
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
206
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
207
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
208
+ if history is not None or return_history:
209
+ print('Now multi-turn chat is not supported in batch_chat.')
210
+ raise NotImplementedError
211
+
212
+ if image_counts is not None:
213
+ num_patches_list = image_counts
214
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
215
+
216
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
217
+ self.img_context_token_id = img_context_token_id
218
+
219
+ if verbose and pixel_values is not None:
220
+ image_bs = pixel_values.shape[0]
221
+ print(f'dynamic ViT batch size: {image_bs}')
222
+
223
+ queries = []
224
+ for idx, num_patches in enumerate(num_patches_list):
225
+ question = questions[idx]
226
+ if pixel_values is not None and '<image>' not in question:
227
+ question = '<image>\n' + question
228
+ template = get_conv_template(self.template)
229
+ template.system_message = self.system_message
230
+ template.append_message(template.roles[0], question)
231
+ template.append_message(template.roles[1], None)
232
+ query = template.get_prompt()
233
+
234
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
235
+ query = query.replace('<image>', image_tokens, 1)
236
+ queries.append(query)
237
+
238
+ tokenizer.padding_side = 'left'
239
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
240
+ input_ids = model_inputs['input_ids'].to(self.device)
241
+ attention_mask = model_inputs['attention_mask'].to(self.device)
242
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
243
+ generation_config['eos_token_id'] = eos_token_id
244
+ generation_output = self.generate(
245
+ pixel_values=pixel_values,
246
+ input_ids=input_ids,
247
+ attention_mask=attention_mask,
248
+ **generation_config
249
+ )
250
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
251
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
252
+ return responses
253
+
254
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
255
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
256
+ verbose=False):
257
+
258
+ if history is None and pixel_values is not None and '<image>' not in question:
259
+ question = '<image>\n' + question
260
+
261
+ if num_patches_list is None:
262
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
263
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
264
+
265
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
266
+ self.img_context_token_id = img_context_token_id
267
+
268
+ template = get_conv_template(self.template)
269
+ template.system_message = self.system_message
270
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
271
+
272
+ history = [] if history is None else history
273
+ for (old_question, old_answer) in history:
274
+ template.append_message(template.roles[0], old_question)
275
+ template.append_message(template.roles[1], old_answer)
276
+ template.append_message(template.roles[0], question)
277
+ template.append_message(template.roles[1], None)
278
+ query = template.get_prompt()
279
+
280
+ if verbose and pixel_values is not None:
281
+ image_bs = pixel_values.shape[0]
282
+ print(f'dynamic ViT batch size: {image_bs}')
283
+
284
+ for num_patches in num_patches_list:
285
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
286
+ query = query.replace('<image>', image_tokens, 1)
287
+
288
+ model_inputs = tokenizer(query, return_tensors='pt')
289
+ input_ids = model_inputs['input_ids'].to(self.device)
290
+ attention_mask = model_inputs['attention_mask'].to(self.device)
291
+ generation_config['eos_token_id'] = eos_token_id
292
+ generation_output = self.generate(
293
+ pixel_values=pixel_values,
294
+ input_ids=input_ids,
295
+ attention_mask=attention_mask,
296
+ **generation_config
297
+ )
298
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
299
+ response = response.split(template.sep.strip())[0].strip()
300
+ history.append((question, response))
301
+ if return_history:
302
+ return response, history
303
+ else:
304
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
305
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
306
+ if verbose:
307
+ print(query_to_print, response)
308
+ return response
309
+
310
+ @torch.no_grad()
311
+ def generate(
312
+ self,
313
+ pixel_values: Optional[torch.FloatTensor] = None,
314
+ input_ids: Optional[torch.FloatTensor] = None,
315
+ attention_mask: Optional[torch.LongTensor] = None,
316
+ visual_features: Optional[torch.FloatTensor] = None,
317
+ generation_config: Optional[GenerationConfig] = None,
318
+ output_hidden_states: Optional[bool] = None,
319
+ **generate_kwargs,
320
+ ) -> torch.LongTensor:
321
+
322
+ assert self.img_context_token_id is not None
323
+ if pixel_values is not None:
324
+ if visual_features is not None:
325
+ vit_embeds = visual_features
326
+ else:
327
+ vit_embeds = self.extract_feature(pixel_values)
328
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
329
+ B, N, C = input_embeds.shape
330
+ input_embeds = input_embeds.reshape(B * N, C)
331
+
332
+ input_ids = input_ids.reshape(B * N)
333
+ selected = (input_ids == self.img_context_token_id)
334
+ assert selected.sum() != 0
335
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
336
+
337
+ input_embeds = input_embeds.reshape(B, N, C)
338
+ else:
339
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
340
+
341
+ outputs = self.language_model.generate(
342
+ inputs_embeds=input_embeds,
343
+ attention_mask=attention_mask,
344
+ generation_config=generation_config,
345
+ output_hidden_states=output_hidden_states,
346
+ use_cache=True,
347
+ **generate_kwargs,
348
+ )
349
+
350
+ return outputs
351
+
352
+ @property
353
+ def lm_head(self):
354
+ return self.language_model.get_output_embeddings()
355
+
356
+ def get_input_embeddings(self):
357
+ return self.language_model.get_input_embeddings()
358
+
359
+ def get_output_embeddings(self):
360
+ return self.language_model.get_output_embeddings()