End of training
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: bsd-3-clause
|
4 |
+
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- marsyas/gtzan
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Audio Classification
|
16 |
+
type: audio-classification
|
17 |
+
dataset:
|
18 |
+
name: GTZAN
|
19 |
+
type: marsyas/gtzan
|
20 |
+
config: all
|
21 |
+
split: train
|
22 |
+
args: all
|
23 |
+
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.88
|
27 |
+
---
|
28 |
+
|
29 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
30 |
+
should probably proofread and complete it, then remove this comment. -->
|
31 |
+
|
32 |
+
# ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
|
33 |
+
|
34 |
+
This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
|
35 |
+
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.5067
|
37 |
+
- Accuracy: 0.88
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 4
|
58 |
+
- eval_batch_size: 4
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 10
|
64 |
+
- mixed_precision_training: Native AMP
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 1.0433 | 1.0 | 225 | 0.9966 | 0.67 |
|
71 |
+
| 0.1742 | 2.0 | 450 | 1.1221 | 0.73 |
|
72 |
+
| 0.8632 | 3.0 | 675 | 0.9182 | 0.79 |
|
73 |
+
| 0.0054 | 4.0 | 900 | 0.9570 | 0.82 |
|
74 |
+
| 0.0002 | 5.0 | 1125 | 0.9579 | 0.8 |
|
75 |
+
| 0.003 | 6.0 | 1350 | 0.5792 | 0.86 |
|
76 |
+
| 0.0001 | 7.0 | 1575 | 0.5325 | 0.89 |
|
77 |
+
| 0.0001 | 8.0 | 1800 | 0.5337 | 0.9 |
|
78 |
+
| 0.0001 | 9.0 | 2025 | 0.5120 | 0.89 |
|
79 |
+
| 0.0001 | 10.0 | 2250 | 0.5067 | 0.88 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.50.0.dev0
|
85 |
+
- Pytorch 2.5.1+cu124
|
86 |
+
- Datasets 3.3.2
|
87 |
+
- Tokenizers 0.21.0
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 344814656
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e858cf21c33a8808eada810a6232cab104be7457e7ff32730041d47557e416e
|
3 |
size 344814656
|
runs/Feb23_16-38-33_b72e4e08c94b/events.out.tfevents.1740328739.b72e4e08c94b.3275.1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16fe45fc84c23fa56be1c45df34b49ca66f390bf4b466cb32a2717b73aa51d39
|
3 |
+
size 104005
|