Upload folder using huggingface_hub
Browse files- README.md +127 -5
- benchmark.py +292 -0
README.md
CHANGED
@@ -87,10 +87,6 @@ language:
|
|
87 |
- yo
|
88 |
- zh
|
89 |
---
|
90 |
-
# Accuracy
|
91 |
-
|
92 |
-
Not sure on accuracy quite yet, will update soon. After I confirm this is working well (preliminary results suggest it's good), I can try a version which combines normalization + quantization for the `token_embeddings` output.
|
93 |
-
|
94 |
# snowflake2_m_uint8
|
95 |
|
96 |
This is a slightly modified version of the uint8 quantized ONNX model from https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0
|
@@ -113,6 +109,130 @@ Here's what the new graph in this model looks like:
|
|
113 |
|
114 |

|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
# Example inference code
|
117 |
|
118 |
```python
|
@@ -120,7 +240,7 @@ import onnxruntime as rt
|
|
120 |
import transformers
|
121 |
|
122 |
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
123 |
-
"
|
124 |
)
|
125 |
session = rt.InferenceSession(
|
126 |
"snowflake2_m_uint8.onnx", providers=["CPUExecutionProvider"]
|
@@ -131,4 +251,6 @@ embeddings = session.run(
|
|
131 |
None, {"input_ids": [enc.input_ids], "attention_mask": [enc.attention_mask]}
|
132 |
)
|
133 |
e = embeddings[1][0] # this is the output tensor for sentence_embedding, it is uint8 array of size 768
|
|
|
|
|
134 |
```
|
|
|
87 |
- yo
|
88 |
- zh
|
89 |
---
|
|
|
|
|
|
|
|
|
90 |
# snowflake2_m_uint8
|
91 |
|
92 |
This is a slightly modified version of the uint8 quantized ONNX model from https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0
|
|
|
109 |
|
110 |

|
111 |
|
112 |
+
# Benchmark
|
113 |
+
|
114 |
+
I don't have an NVIDIA GPU, so running some of the MTEB benchmarks is a bit of a chore.
|
115 |
+
|
116 |
+
Instead I created this little benchmark which I'll now explain.
|
117 |
+
|
118 |
+
Here's how it works:
|
119 |
+
|
120 |
+
1) I generate embeddings for each token in this model. I do this with the original model, and my quantized output model
|
121 |
+
|
122 |
+
2) I upsert these embeddings into Qdrant DB, with ID == token index
|
123 |
+
|
124 |
+
3) I compare the models by querying a token on one model, then the other model, and seeing how different the results are
|
125 |
+
|
126 |
+
For instance:
|
127 |
+
|
128 |
+
When I query the embedding for token 0, limit=10 using `model_uint8.onnx` I get the top result here.
|
129 |
+
Same query for this model is the bottom result.
|
130 |
+
|
131 |
+
[0, 181513, 3309, 97636, 6, 104615, 95353, 124967, 115375, 87124]
|
132 |
+
[0, 181513, 3309, 95353, 6, 104615, 97636, 124967, 115375, 87124]
|
133 |
+
|
134 |
+
The results are close, but in my model the results in position 4 & 7 have been swapped.
|
135 |
+
|
136 |
+
My benchmark here is measuring how often this happens.
|
137 |
+
|
138 |
+
The code for reproducing this benchmark is located in this repo in `benchmark.py`
|
139 |
+
|
140 |
+
...
|
141 |
+
|
142 |
+
Here are the results for [model_uint8.onnx](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0/blob/main/onnx/model_uint8.onnx) vs my model here. Exact means the same tokens were in the same position. 'off by 1' means the correct token was in the results, but it was in a position 1 away from the original position. 'missing' means that a token which was present in the original query wasn't found in the results for my model.
|
143 |
+
|
144 |
+
Note that discrepancies here don't necessarily mean *wrong* results, just *different* results. The best way to see differences is to test directly on your own data and see if the results are to your liking.
|
145 |
+
|
146 |
+
```
|
147 |
+
Stats for top 10 query results across entire token range:
|
148 |
+
exact : 76.18%
|
149 |
+
off by 1 : 19.77%
|
150 |
+
off by 2 : 2.72%
|
151 |
+
off by 3 : 0.54%
|
152 |
+
off by 4 : 0.12%
|
153 |
+
off by 5+: 0.04%
|
154 |
+
missing : 0.63%
|
155 |
+
|
156 |
+
Stats for top 20 query results across entire token range:
|
157 |
+
exact : 65.86%
|
158 |
+
off by 1 : 25.00%
|
159 |
+
off by 2 : 5.87%
|
160 |
+
off by 3 : 1.68%
|
161 |
+
off by 4 : 0.53%
|
162 |
+
off by 5+: 0.27%
|
163 |
+
missing : 0.78%
|
164 |
+
|
165 |
+
Stats for top 50 query results across entire token range:
|
166 |
+
exact : 48.54%
|
167 |
+
off by 1 : 29.09%
|
168 |
+
off by 2 : 11.35%
|
169 |
+
off by 3 : 5.02%
|
170 |
+
off by 4 : 2.38%
|
171 |
+
off by 5+: 2.36%
|
172 |
+
missing : 1.26%
|
173 |
+
```
|
174 |
+
|
175 |
+
Here are the results for [model_fp16.onnx](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0/blob/main/onnx/model_fp16.onnx) vs [model_uint8.onnx](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0/blob/main/onnx/model_uint8.onnx):
|
176 |
+
|
177 |
+
```
|
178 |
+
Stats for top 10 query results across entire token range:
|
179 |
+
exact : 20.54%
|
180 |
+
off by 1 : 13.79%
|
181 |
+
off by 2 : 8.55%
|
182 |
+
off by 3 : 6.37%
|
183 |
+
off by 4 : 4.87%
|
184 |
+
off by 5+: 31.53%
|
185 |
+
missing : 14.34%
|
186 |
+
|
187 |
+
Stats for top 20 query results across entire token range:
|
188 |
+
exact : 11.58%
|
189 |
+
off by 1 : 9.46%
|
190 |
+
off by 2 : 6.76%
|
191 |
+
off by 3 : 5.58%
|
192 |
+
off by 4 : 4.70%
|
193 |
+
off by 5+: 38.80%
|
194 |
+
missing : 23.12%
|
195 |
+
|
196 |
+
Stats for top 50 query results across entire token range:
|
197 |
+
exact : 5.34%
|
198 |
+
off by 1 : 5.18%
|
199 |
+
off by 2 : 4.09%
|
200 |
+
off by 3 : 3.60%
|
201 |
+
off by 4 : 3.22%
|
202 |
+
off by 5+: 36.17%
|
203 |
+
missing : 42.38%
|
204 |
+
```
|
205 |
+
|
206 |
+
Here are the results for [model.onnx](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0/blob/main/onnx/model.onnx) vs [model_fp16.onnx](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0/blob/main/onnx/model_fp16.onnx):
|
207 |
+
|
208 |
+
```
|
209 |
+
Stats for top 10 query results across entire token range:
|
210 |
+
exact : 18.12%
|
211 |
+
off by 1 : 11.80%
|
212 |
+
off by 2 : 7.41%
|
213 |
+
off by 3 : 5.65%
|
214 |
+
off by 4 : 4.45%
|
215 |
+
off by 5+: 32.29%
|
216 |
+
missing : 20.28%
|
217 |
+
|
218 |
+
Stats for top 20 query results across entire token range:
|
219 |
+
exact : 10.08%
|
220 |
+
off by 1 : 7.93%
|
221 |
+
off by 2 : 5.70%
|
222 |
+
off by 3 : 4.77%
|
223 |
+
off by 4 : 4.11%
|
224 |
+
off by 5+: 37.46%
|
225 |
+
missing : 29.96%
|
226 |
+
|
227 |
+
Stats for top 50 query results across entire token range:
|
228 |
+
exact : 4.59%
|
229 |
+
off by 1 : 4.28%
|
230 |
+
off by 2 : 3.39%
|
231 |
+
off by 3 : 3.00%
|
232 |
+
off by 4 : 2.73%
|
233 |
+
off by 5+: 33.45%
|
234 |
+
missing : 48.58%
|
235 |
+
```
|
236 |
# Example inference code
|
237 |
|
238 |
```python
|
|
|
240 |
import transformers
|
241 |
|
242 |
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
243 |
+
"." # path to wherever this model is located
|
244 |
)
|
245 |
session = rt.InferenceSession(
|
246 |
"snowflake2_m_uint8.onnx", providers=["CPUExecutionProvider"]
|
|
|
251 |
None, {"input_ids": [enc.input_ids], "attention_mask": [enc.attention_mask]}
|
252 |
)
|
253 |
e = embeddings[1][0] # this is the output tensor for sentence_embedding, it is uint8 array of size 768
|
254 |
+
# alternatively, if you change the first argument of session.run to ['sentence_embedding']
|
255 |
+
# then you would get the results from embeddings[0][0]
|
256 |
```
|
benchmark.py
ADDED
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import onnxruntime as rt
|
3 |
+
import transformers
|
4 |
+
from qdrant_client import QdrantClient, models
|
5 |
+
import queue
|
6 |
+
from threading import Thread, Lock
|
7 |
+
import time
|
8 |
+
from pyatomix import AtomicInt
|
9 |
+
|
10 |
+
# adjust these settings as needed
|
11 |
+
TOKENIZER_PATH = "."
|
12 |
+
ORIG_MODEL_PATH = "model_uint8.onnx"
|
13 |
+
ORIG_DATATYPE = models.Datatype.FLOAT32
|
14 |
+
ORIG_COLLECTION_NAME = "baseline"
|
15 |
+
COMPARE_MODEL_PATH = "snowflake2_m_uint8.onnx"
|
16 |
+
COMPARE_DATATYPE = models.Datatype.UINT8
|
17 |
+
COMPARE_COLLECTION_NAME = "compare"
|
18 |
+
EMBEDDING_DIM = 768 # size of the model output
|
19 |
+
STAT_RANGES = [
|
20 |
+
10,
|
21 |
+
20,
|
22 |
+
50,
|
23 |
+
] # stats will be calculated for each range: top 10, top 20, etc.
|
24 |
+
STATS = {}
|
25 |
+
STAT_LOCK = Lock()
|
26 |
+
BATCH_SIZE = 1000 # this many token/id pairs will be processed at a time
|
27 |
+
THREADS = 8 # number of threads to use
|
28 |
+
# Qdrant client settings here
|
29 |
+
CLIENT_URL = "http://127.0.0.1"
|
30 |
+
CLIENT_PORT = 6333
|
31 |
+
CLIENT_GRPC_PORT = 6334
|
32 |
+
CLIENT_USE_GRPC = True
|
33 |
+
FINISHED = AtomicInt(0)
|
34 |
+
|
35 |
+
|
36 |
+
def collect_tokens() -> list[str] | None:
|
37 |
+
print("Attempting to grab tokens from tokenizer...")
|
38 |
+
with open(f"{TOKENIZER_PATH}/tokenizer.json", "r") as f:
|
39 |
+
t = f.read()
|
40 |
+
j = json.loads(t)
|
41 |
+
v = j["model"]["vocab"]
|
42 |
+
toks = [x[0] for x in v]
|
43 |
+
print(f"Found {len(toks)} tokens.")
|
44 |
+
return toks
|
45 |
+
|
46 |
+
|
47 |
+
def init_worker(q: queue.Queue, model_path: str, collection_name: str):
|
48 |
+
try:
|
49 |
+
session = rt.InferenceSession(model_path, providers=["CPUExecutionProvider"])
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error loading ONNX model: {e}")
|
52 |
+
return
|
53 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(TOKENIZER_PATH)
|
54 |
+
client = QdrantClient(
|
55 |
+
url=CLIENT_URL,
|
56 |
+
port=CLIENT_PORT,
|
57 |
+
grpc_port=CLIENT_GRPC_PORT,
|
58 |
+
prefer_grpc=CLIENT_USE_GRPC,
|
59 |
+
)
|
60 |
+
global FINISHED
|
61 |
+
while True:
|
62 |
+
try:
|
63 |
+
chunk = q.get(False)
|
64 |
+
except queue.Empty:
|
65 |
+
return
|
66 |
+
batch = []
|
67 |
+
for c in chunk:
|
68 |
+
FINISHED += 1
|
69 |
+
# c[0] == id, c[1] == token, we want id to always be associated with the same token across models
|
70 |
+
enc = tokenizer(c[1]) # this could've been batched...
|
71 |
+
embeddings = session.run(
|
72 |
+
None,
|
73 |
+
{
|
74 |
+
"input_ids": [enc.input_ids],
|
75 |
+
"attention_mask": [enc.attention_mask],
|
76 |
+
},
|
77 |
+
)
|
78 |
+
batch.append( # [1][0] == sentence_embedding
|
79 |
+
models.PointStruct(id=c[0], vector={"dense": embeddings[1][0]})
|
80 |
+
)
|
81 |
+
client.batch_update_points(
|
82 |
+
collection_name=collection_name,
|
83 |
+
update_operations=[models.UpsertOperation(upsert=models.PointsList(points=batch))],
|
84 |
+
wait=False,
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
def init_collection(collection_name: str, model_path: str, datatype: models.Datatype) -> bool:
|
89 |
+
client = QdrantClient(
|
90 |
+
url=CLIENT_URL,
|
91 |
+
port=CLIENT_PORT,
|
92 |
+
grpc_port=CLIENT_GRPC_PORT,
|
93 |
+
prefer_grpc=CLIENT_USE_GRPC,
|
94 |
+
)
|
95 |
+
if client.collection_exists(collection_name):
|
96 |
+
info = client.get_collection(collection_name)
|
97 |
+
print(f"Collection '{collection_name}' already exists, skipping init.")
|
98 |
+
print(f"{info.points_count} points in collection.")
|
99 |
+
return True
|
100 |
+
res = client.create_collection(
|
101 |
+
collection_name=collection_name,
|
102 |
+
vectors_config={
|
103 |
+
"dense": models.VectorParams(
|
104 |
+
size=EMBEDDING_DIM,
|
105 |
+
distance=models.Distance.COSINE,
|
106 |
+
on_disk=False,
|
107 |
+
datatype=datatype,
|
108 |
+
),
|
109 |
+
},
|
110 |
+
hnsw_config=models.HnswConfigDiff(m=0), # no index
|
111 |
+
on_disk_payload=False,
|
112 |
+
)
|
113 |
+
if not res:
|
114 |
+
print(f"Error creating collection.")
|
115 |
+
return False
|
116 |
+
else:
|
117 |
+
print("Collection created.")
|
118 |
+
toks = collect_tokens()
|
119 |
+
FINISHED.store(0)
|
120 |
+
if toks:
|
121 |
+
ids = [x for x in range(len(toks))]
|
122 |
+
# align Qdrant IDs with the token for later analysis
|
123 |
+
pairs = list(zip(ids, toks))
|
124 |
+
# lists of (Qdrant ID, token)
|
125 |
+
chunks = [pairs[i : i + BATCH_SIZE] for i in range(0, len(pairs), BATCH_SIZE)]
|
126 |
+
q = queue.Queue()
|
127 |
+
for c in chunks:
|
128 |
+
q.put(c)
|
129 |
+
for _ in range(THREADS):
|
130 |
+
t = Thread(target=init_worker, args=[q, model_path, collection_name])
|
131 |
+
t.start()
|
132 |
+
count = 0
|
133 |
+
while FINISHED.load() < len(toks):
|
134 |
+
time.sleep(0.5)
|
135 |
+
count += 1
|
136 |
+
if count == 20: # update every 10 seconds or so
|
137 |
+
print(f"approximately {q.qsize() * BATCH_SIZE} items left in queue...")
|
138 |
+
count = 0
|
139 |
+
print(f"Done with collection init, {len(toks)} tokens upserted.")
|
140 |
+
# enable indexing
|
141 |
+
client.update_collection(collection_name=collection_name, hnsw_config=models.HnswConfigDiff(m=16))
|
142 |
+
return True
|
143 |
+
else:
|
144 |
+
print("Failed to grab tokens from tokenizer.")
|
145 |
+
return False
|
146 |
+
|
147 |
+
|
148 |
+
def count_mismatches(list1, list2) -> int:
|
149 |
+
count = 0
|
150 |
+
assert len(list1) == len(list2)
|
151 |
+
for i in range(len(list1)):
|
152 |
+
if list1[i] != list2[i]:
|
153 |
+
count += 1
|
154 |
+
return count
|
155 |
+
|
156 |
+
|
157 |
+
def score_results(
|
158 |
+
list1: list,
|
159 |
+
list2: list,
|
160 |
+
):
|
161 |
+
assert len(list1) == len(list2)
|
162 |
+
global STATS
|
163 |
+
for x in STAT_RANGES:
|
164 |
+
with STAT_LOCK:
|
165 |
+
# STATS = { range, {"exact": AtomicInt, ... }}
|
166 |
+
d = STATS.get(x)
|
167 |
+
if d is None:
|
168 |
+
d = {
|
169 |
+
"exact": AtomicInt(0),
|
170 |
+
"off_by_1": AtomicInt(0),
|
171 |
+
"off_by_2": AtomicInt(0),
|
172 |
+
"off_by_3": AtomicInt(0),
|
173 |
+
"off_by_4": AtomicInt(0),
|
174 |
+
"off_by_5": AtomicInt(0),
|
175 |
+
"missing": AtomicInt(0),
|
176 |
+
}
|
177 |
+
STATS[x] = d
|
178 |
+
for i in range(x):
|
179 |
+
if list1[i] == list2[i]:
|
180 |
+
d["exact"] += 1
|
181 |
+
else:
|
182 |
+
if list1[i] in list2:
|
183 |
+
i2 = list2.index(list1[i])
|
184 |
+
val = abs(i2 - i)
|
185 |
+
if val == 1:
|
186 |
+
d["off_by_1"] += 1
|
187 |
+
elif val == 2:
|
188 |
+
d["off_by_2"] += 1
|
189 |
+
elif val == 3:
|
190 |
+
d["off_by_3"] += 1
|
191 |
+
elif val == 4:
|
192 |
+
d["off_by_4"] += 1
|
193 |
+
else:
|
194 |
+
d["off_by_5"] += 1
|
195 |
+
else:
|
196 |
+
d["missing"] += 1
|
197 |
+
|
198 |
+
|
199 |
+
def main_worker(q: queue.Queue, limit: int):
|
200 |
+
global FINISHED
|
201 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(TOKENIZER_PATH)
|
202 |
+
orig_session = rt.InferenceSession(ORIG_MODEL_PATH, providers=["CPUExecutionProvider"])
|
203 |
+
compare_session = rt.InferenceSession(COMPARE_MODEL_PATH, providers=["CPUExecutionProvider"])
|
204 |
+
client = QdrantClient(
|
205 |
+
url=CLIENT_URL,
|
206 |
+
port=CLIENT_PORT,
|
207 |
+
grpc_port=CLIENT_GRPC_PORT,
|
208 |
+
prefer_grpc=CLIENT_USE_GRPC,
|
209 |
+
)
|
210 |
+
while True:
|
211 |
+
try:
|
212 |
+
chunk = q.get(False)
|
213 |
+
except queue.Empty:
|
214 |
+
return
|
215 |
+
# c[0] == id, c[1] == token, we want id to always be associated with the same token across models
|
216 |
+
for c in chunk:
|
217 |
+
enc = tokenizer(c)
|
218 |
+
oe = orig_session.run(
|
219 |
+
None,
|
220 |
+
{"input_ids": [enc.input_ids], "attention_mask": [enc.attention_mask]},
|
221 |
+
)
|
222 |
+
ce = compare_session.run(
|
223 |
+
None,
|
224 |
+
{"input_ids": [enc.input_ids], "attention_mask": [enc.attention_mask]},
|
225 |
+
)
|
226 |
+
oresult = client.query_points(
|
227 |
+
collection_name=ORIG_COLLECTION_NAME,
|
228 |
+
using="dense",
|
229 |
+
query=oe[1][0],
|
230 |
+
limit=limit + 5, # for our scoring metric we want to look slightly past the end
|
231 |
+
)
|
232 |
+
cresult = client.query_points(
|
233 |
+
collection_name=COMPARE_COLLECTION_NAME,
|
234 |
+
using="dense",
|
235 |
+
query=ce[1][0],
|
236 |
+
limit=limit + 5,
|
237 |
+
)
|
238 |
+
oids = [p.id for p in oresult.points]
|
239 |
+
cids = [p.id for p in cresult.points]
|
240 |
+
score_results(
|
241 |
+
oids,
|
242 |
+
cids,
|
243 |
+
)
|
244 |
+
FINISHED += 1
|
245 |
+
|
246 |
+
|
247 |
+
def main():
|
248 |
+
if not init_collection(ORIG_COLLECTION_NAME, ORIG_MODEL_PATH, ORIG_DATATYPE):
|
249 |
+
print("Failed to initialize original model values, exiting.")
|
250 |
+
return
|
251 |
+
if not init_collection(COMPARE_COLLECTION_NAME, COMPARE_MODEL_PATH, COMPARE_DATATYPE):
|
252 |
+
print("Failed to initialize secondary model values, exiting.")
|
253 |
+
return
|
254 |
+
toks = collect_tokens()
|
255 |
+
limit = 0
|
256 |
+
for x in STAT_RANGES:
|
257 |
+
if x > limit:
|
258 |
+
limit = x
|
259 |
+
FINISHED.store(0)
|
260 |
+
if toks:
|
261 |
+
chunks = [toks[i : i + BATCH_SIZE] for i in range(0, len(toks), BATCH_SIZE)]
|
262 |
+
q = queue.Queue()
|
263 |
+
for c in chunks:
|
264 |
+
q.put(c)
|
265 |
+
print("Starting analysis.")
|
266 |
+
for _ in range(THREADS):
|
267 |
+
t = Thread(
|
268 |
+
target=main_worker,
|
269 |
+
args=[q, limit],
|
270 |
+
)
|
271 |
+
t.start()
|
272 |
+
count = 0
|
273 |
+
while FINISHED.load() < len(toks):
|
274 |
+
time.sleep(0.5)
|
275 |
+
count += 1
|
276 |
+
if count == 20: # update every 10 seconds or so
|
277 |
+
print(f"approximately {q.qsize() * BATCH_SIZE} items left in queue...")
|
278 |
+
count = 0
|
279 |
+
print(f"Done with analysis.")
|
280 |
+
with STAT_LOCK:
|
281 |
+
for k, v in STATS.items():
|
282 |
+
print(f"Stats for top {k} query results across entire token range:")
|
283 |
+
print(f"exact : {(float(v["exact"].load()) / (len(toks) * k)) * 100:.2f}%")
|
284 |
+
print(f"off by 1 : {(float(v["off_by_1"].load()) / (len(toks) * k)) * 100:.2f}%")
|
285 |
+
print(f"off by 2 : {(float(v["off_by_2"].load()) / (len(toks) * k)) * 100:.2f}%")
|
286 |
+
print(f"off by 3 : {(float(v["off_by_3"].load()) / (len(toks) * k)) * 100:.2f}%")
|
287 |
+
print(f"off by 4 : {(float(v["off_by_4"].load()) / (len(toks) * k)) * 100:.2f}%")
|
288 |
+
print(f"off by 5+: {(float(v["off_by_5"].load()) / (len(toks) * k)) * 100:.2f}%")
|
289 |
+
print(f"missing : {(float(v["missing"].load()) / (len(toks) * k)) * 100:.2f}%\n")
|
290 |
+
|
291 |
+
|
292 |
+
main()
|