--- license: cc-by-nc-4.0 tags: - text-generation - llama-3.2-1b-instruct - function-calling - finetuned-model - trl - lora - Salesforce/xlam-function-calling-60k datasets: - Salesforce/xlam-function-calling-60k base_model: meta-llama/Llama-3.2-1B-Instruct library_name: transformers languages: - en pipeline_tag: text-generation --- # Llama-3.2-1B-Instruct Fine-tuned on xLAM ## Overview This is a fine-tuned version of the Llama-3.2-1B-Instruct model. The model was trained using Hugging Face's TRL library on the xLAM dataset for function calling capabilities. ## Model Details - **Developed by:** ermiaazarkhalili - **License:** cc-by-nc-4.0 - **languages:** en - **Finetuned from model:** meta-llama/Llama-3.2-1B-Instruct - **Model size:** Llama-3.2-1B-Instruct parameters - **Vocab size:** 128,256 tokens - **Max sequence length:** 2,048 tokens - **Tensor type:** BF16 - **Pad token:** `<|eot_id|>` (ID: 128009) ## Training Information The model was fine-tuned using the following configuration: ### Training Libraries - **Hugging Face TRL Library** for advanced training techniques - **LoRA (Low-Rank Adaptation)** for parameter-efficient training - **4-bit quantization** for memory efficiency ### Training Parameters - **Learning Rate:** 0.0001 - **Batch Size:** 16 - **Gradient Accumulation Steps:** 8 - **Max Training Steps:** 1,000 - **Warmup Ratio:** 0.1 - **Max Sequence Length:** 2,048 - **Output Directory:** ./Llama_3_2_1B_Instruct_xLAM ### LoRA Configuration - **LoRA Rank (r):** 16 - **LoRA Alpha:** 32 - **Target Modules:** Query and Value projections - **LoRA Dropout:** 0.1 ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained( "ermiaazarkhalili/Llama-3.2-1B-Instruct_function_calling_xLAM", torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( "ermiaazarkhalili/Llama-3.2-1B-Instruct_function_calling_xLAM", trust_remote_code=True ) text= "Check if the numbers 8 and 1233 are powers of two.\n\n" # Tokenize and generate inputs = tokenizer(text, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=512, temperature=0.7, do_sample=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id ) # Decode response response = tokenizer.decode(outputs[0], skip_special_tokens=True) generated_text = response[len(text):].strip() print(generated_text) ``` ## Dataset The model was trained on the **xLAM** dataset. ## Model Performance This fine-tuned model demonstrates improved capabilities in: - **Function Detection:** Identifying when to call functions - **Parameter Extraction:** Extracting correct parameters from user queries - **Output Formatting:** Generating properly structured function calls - **Tool Integration:** Working with external APIs and tools ## Credits This model was developed by [ermiaazarkhalili](https://huggingface.co/ermiaazarkhalili) and leverages the capabilities of: - **Llama-3.2-1B-Instruct** base model - **Hugging Face TRL** for advanced fine-tuning techniques - **LoRA** for parameter-efficient adaptation ## Contact For any inquiries or support, please reach out to the developer at [ermiaazarkhalili](https://huggingface.co/ermiaazarkhalili). ## Acknowledgments We would like to thank the creators of: - **Llama-3.2-1B-Instruct** for the excellent base model - **Hugging Face** for the TRL library and infrastructure - **xLAM** dataset contributors - **LoRA** researchers for parameter-efficient fine-tuning methods ## Citation If you use this model, please cite: ```bibtex @misc{ermiaazarkhalili_Llama-3.2-1B-Instruct_function_calling_xLAM, author = {ermiaazarkhalili}, title = { Fine-tuning Llama-3.2-1B-Instruct on xLAM for Function Calling}, year = {2025}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/ermiaazarkhalili/Llama-3.2-1B-Instruct_function_calling_xLAM}} } ```