---
license: cc-by-nc-4.0
tags:
- text-generation
- qwen2.5-7b-instruct
- function-calling
- finetuned-model
- trl
- lora
- Salesforce/xlam-function-calling-60k
datasets:
- Salesforce/xlam-function-calling-60k
base_model: Qwen/Qwen2.5-7B-Instruct
library_name: transformers
languages:
- en
pipeline_tag: text-generation
---
# Qwen2.5-7B-Instruct Fine-tuned on xLAM
## Overview
This is a fine-tuned version of the Qwen2.5-7B-Instruct model. The model was trained using Hugging Face's TRL library on the xLAM dataset for function calling capabilities.
## Model Details
- **Developed by:** ermiaazarkhalili
- **License:** cc-by-nc-4.0
- **languages:** en
- **Finetuned from model:** Qwen/Qwen2.5-7B-Instruct
- **Model size:** Qwen2.5-7B-Instruct parameters
- **Vocab size:** 152,064 tokens
- **Max sequence length:** 2,048 tokens
- **Tensor type:** BF16
- **Pad token:** `<|im_end|>` (ID: 151645)
## Training Information
The model was fine-tuned using the following configuration:
### Training Libraries
- **Hugging Face TRL Library** for advanced training techniques
- **LoRA (Low-Rank Adaptation)** for parameter-efficient training
- **4-bit quantization** for memory efficiency
### Training Parameters
- **Learning Rate:** 0.0001
- **Batch Size:** 16
- **Gradient Accumulation Steps:** 8
- **Max Training Steps:** 1,000
- **Warmup Ratio:** 0.1
- **Max Sequence Length:** 2,048
- **Output Directory:** ./Qwen2_5_7B_Instruct_xLAM
### LoRA Configuration
- **LoRA Rank (r):** 16
- **LoRA Alpha:** 32
- **Target Modules:** Query and Value projections
- **LoRA Dropout:** 0.1
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
"ermiaazarkhalili/Qwen2.5-7B-Instruct_Function_Calling_xLAM",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"ermiaazarkhalili/Qwen2.5-7B-Instruct_Function_Calling_xLAM",
trust_remote_code=True
)
text= "Check if the numbers 8 and 1233 are powers of two.\n\n"
# Tokenize and generate
inputs = tokenizer(text, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
generated_text = response[len(text):].strip()
print(generated_text)
```
## Dataset
The model was trained on the **xLAM** dataset.
## Model Performance
This fine-tuned model demonstrates improved capabilities in:
- **Function Detection:** Identifying when to call functions
- **Parameter Extraction:** Extracting correct parameters from user queries
- **Output Formatting:** Generating properly structured function calls
- **Tool Integration:** Working with external APIs and tools
## Credits
This model was developed by [ermiaazarkhalili](https://huggingface.co/ermiaazarkhalili) and leverages the capabilities of:
- **Qwen2.5-7B-Instruct** base model
- **Hugging Face TRL** for advanced fine-tuning techniques
- **LoRA** for parameter-efficient adaptation
## Contact
For any inquiries or support, please reach out to the developer at [ermiaazarkhalili](https://huggingface.co/ermiaazarkhalili).
## Acknowledgments
We would like to thank the creators of:
- **Qwen2.5-7B-Instruct** for the excellent base model
- **Hugging Face** for the TRL library and infrastructure
- **xLAM** dataset contributors
- **LoRA** researchers for parameter-efficient fine-tuning methods
## Citation
If you use this model, please cite:
```bibtex
@misc{ermiaazarkhalili_Qwen2.5-7B-Instruct_Function_Calling_xLAM,
author = {ermiaazarkhalili},
title = { Fine-tuning Qwen2.5-7B-Instruct on xLAM for Function Calling},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/ermiaazarkhalili/Qwen2.5-7B-Instruct_Function_Calling_xLAM}}
}
```