Multi-View 3D Point Tracking

[](#)
[**Frano Rajič**](https://m43.github.io/)
1 ·
[**Haofei Xu**](https://haofeixu.github.io/)
1 ·
[**Marko Mihajlovic**](https://markomih.github.io/)
1 ·
[**Siyuan Li**](https://siyuanliii.github.io/)
1 ·
[**Irem Demir**](https://github.com/iremddemir)
1
[**Emircan Gündoğdu**](https://github.com/emircangun)
1 ·
[**Lei Ke**](https://www.kelei.site/)
2 ·
[**Sergey Prokudin**](https://vlg.inf.ethz.ch/team/Dr-Sergey-Prokudin.html)
1,3 ·
[**Marc Pollefeys**](https://people.inf.ethz.ch/marc.pollefeys/)
1,4 ·
[**Siyu Tang**](https://vlg.inf.ethz.ch/team/Prof-Dr-Siyu-Tang.html)
1
1[ETH Zürich](https://vlg.inf.ethz.ch/)
2[Carnegie Mellon University](https://www.cmu.edu/)
3[Balgrist University Hospital](https://www.balgrist.ch/)
4[Microsoft](https://www.microsoft.com/)
MVTracker is the first **data-driven multi-view 3D point tracker** for tracking arbitrary 3D points across multiple cameras. It fuses multi-view features into a unified 3D feature point cloud, within which it leverages kNN-based correlation to capture spatiotemporal relationships across views. A transformer then iteratively refines the point tracks, handling occlusions and adapting to varying camera setups without per-sequence optimization.