Upload 8 files
Browse filesupload gbst-base-ds6x-newblock-1144k
- config.json +82 -0
- configuration_gbswt5.py +139 -0
- gbst.py +254 -0
- generation_config.json +7 -0
- modeling_gbswt5.py +766 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +150 -0
- tokenizer_config.json +157 -0
config.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/jhshin/gbst-base-ds6x-newblock-972k-240517/",
|
3 |
+
"architectures": [
|
4 |
+
"GBSWT5ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_gbswt5.GBSWT5Config",
|
8 |
+
"AutoModel": "modeling_gbswt5.GBSWT5ForModel",
|
9 |
+
"AutoModelForSeq2SeqLM": "modeling_gbswt5.GBSWT5ForConditionalGeneration"
|
10 |
+
},
|
11 |
+
"d_ff": 3968,
|
12 |
+
"d_kv": 64,
|
13 |
+
"d_model": 1536,
|
14 |
+
"decoder_start_token_id": 0,
|
15 |
+
"dense_act_fn": "gelu_new",
|
16 |
+
"downsample_factor": 6,
|
17 |
+
"dropout_rate": 0.0,
|
18 |
+
"eos_token_id": 1,
|
19 |
+
"feed_forward_proj": "gated-gelu",
|
20 |
+
"gbst_batchnorm": false,
|
21 |
+
"gradient_checkpointing": false,
|
22 |
+
"initializer_factor": 0.05,
|
23 |
+
"is_encoder_decoder": true,
|
24 |
+
"is_gated_act": true,
|
25 |
+
"kv_heads": null,
|
26 |
+
"layer_norm_epsilon": 1e-06,
|
27 |
+
"max_subword_block_size": null,
|
28 |
+
"model_type": "gbswt5",
|
29 |
+
"num_decoder_layers": 6,
|
30 |
+
"num_heads": 12,
|
31 |
+
"num_layers": 18,
|
32 |
+
"output_past": true,
|
33 |
+
"pad_token_id": 0,
|
34 |
+
"relative_attention_max_distance": 128,
|
35 |
+
"relative_attention_num_buckets": 32,
|
36 |
+
"score_consensus_attn": true,
|
37 |
+
"subword_blocks": [
|
38 |
+
[
|
39 |
+
1,
|
40 |
+
0
|
41 |
+
],
|
42 |
+
[
|
43 |
+
2,
|
44 |
+
0
|
45 |
+
],
|
46 |
+
[
|
47 |
+
3,
|
48 |
+
0
|
49 |
+
],
|
50 |
+
[
|
51 |
+
4,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
[
|
55 |
+
5,
|
56 |
+
0
|
57 |
+
],
|
58 |
+
[
|
59 |
+
6,
|
60 |
+
0
|
61 |
+
],
|
62 |
+
[
|
63 |
+
7,
|
64 |
+
0
|
65 |
+
],
|
66 |
+
[
|
67 |
+
8,
|
68 |
+
0
|
69 |
+
],
|
70 |
+
[
|
71 |
+
9,
|
72 |
+
0
|
73 |
+
]
|
74 |
+
],
|
75 |
+
"tie_word_embeddings": false,
|
76 |
+
"tokenizer_class": "ByT5Tokenizer",
|
77 |
+
"torch_dtype": "float32",
|
78 |
+
"transformers_version": "4.33.2",
|
79 |
+
"use_cache": true,
|
80 |
+
"vocab_size": 384,
|
81 |
+
"z_loss": 0.0001
|
82 |
+
}
|
configuration_gbswt5.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
GBSWT5 model configuration.
|
3 |
+
|
4 |
+
Copyright (C) 2023~ ETRI LIRS. Jong-hun Shin.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from typing import Mapping
|
8 |
+
from transformers.configuration_utils import PretrainedConfig
|
9 |
+
from transformers.onnx import OnnxSeq2SeqConfigWithPast
|
10 |
+
from transformers.utils import logging
|
11 |
+
|
12 |
+
|
13 |
+
logger = logging.get_logger(__name__)
|
14 |
+
_BLOCKS = (
|
15 |
+
(1, 0), (2, 0), (3, 0), (4, 0),
|
16 |
+
(6, 0), (9, 0),
|
17 |
+
#(12, 0), (12, 3), (12, 6), (12, 9)
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
class GBSWT5Config(PretrainedConfig):
|
22 |
+
""" Based on models.t5. configuration_t5. T5Config in hf Transformers. """
|
23 |
+
model_type = "gbswt5"
|
24 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
25 |
+
attribute_map = {"hidden_size": "d_model",
|
26 |
+
"num_attention_heads": "num_heads",
|
27 |
+
"num_hidden_layers": "num_layers"}
|
28 |
+
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
vocab_size=384,
|
32 |
+
d_model=512,
|
33 |
+
d_kv=64,
|
34 |
+
d_ff=2048,
|
35 |
+
num_layers=6,
|
36 |
+
num_decoder_layers=None,
|
37 |
+
num_heads=8,
|
38 |
+
relative_attention_num_buckets=32,
|
39 |
+
relative_attention_max_distance=128,
|
40 |
+
dropout_rate=0.1,
|
41 |
+
layer_norm_epsilon=1e-6,
|
42 |
+
initializer_factor=1.0,
|
43 |
+
feed_forward_proj="relu",
|
44 |
+
is_encoder_decoder=True,
|
45 |
+
use_cache=True,
|
46 |
+
pad_token_id=0,
|
47 |
+
eos_token_id=1,
|
48 |
+
max_subword_block_size=None, # GBSWT-related options here from
|
49 |
+
subword_blocks=_BLOCKS,
|
50 |
+
downsample_factor=1,
|
51 |
+
score_consensus_attn=True,
|
52 |
+
z_loss=1e-4,
|
53 |
+
gbst_batchnorm=False,
|
54 |
+
**kwargs,
|
55 |
+
):
|
56 |
+
self.vocab_size = vocab_size
|
57 |
+
self.d_model = d_model
|
58 |
+
self.d_kv = d_kv
|
59 |
+
self.d_ff = d_ff
|
60 |
+
self.num_layers = num_layers
|
61 |
+
self.num_decoder_layers = (
|
62 |
+
num_decoder_layers if num_decoder_layers is not None else self.num_layers
|
63 |
+
) # default = symmetry
|
64 |
+
self.num_heads = num_heads
|
65 |
+
self.relative_attention_num_buckets = relative_attention_num_buckets
|
66 |
+
self.relative_attention_max_distance = relative_attention_max_distance
|
67 |
+
self.dropout_rate = dropout_rate
|
68 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
69 |
+
self.initializer_factor = initializer_factor
|
70 |
+
self.feed_forward_proj = feed_forward_proj
|
71 |
+
self.use_cache = use_cache
|
72 |
+
|
73 |
+
act_info = self.feed_forward_proj.split("-")
|
74 |
+
self.dense_act_fn = act_info[-1]
|
75 |
+
self.is_gated_act = act_info[0] == "gated"
|
76 |
+
|
77 |
+
# GBSWT-related configurations
|
78 |
+
self.max_subword_block_size = max_subword_block_size
|
79 |
+
self.subword_blocks = subword_blocks
|
80 |
+
self.downsample_factor = downsample_factor
|
81 |
+
self.score_consensus_attn = score_consensus_attn
|
82 |
+
self.gbst_batchnorm = gbst_batchnorm
|
83 |
+
|
84 |
+
# z_loss for computational stability.
|
85 |
+
# see https://github.com/tensorflow/mesh/blob \
|
86 |
+
# /fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
87 |
+
# (1) logits이 0으로 부터 너무 멀어지게 드리프팅 되지 않도록 하여, bf16에서 발생하는
|
88 |
+
# round-off error를 방지하기 위함. (2) 로짓이 normalized log-probabilities가 되도록 제고한다.
|
89 |
+
self.z_loss = z_loss
|
90 |
+
|
91 |
+
if self.subword_blocks is not None and isinstance(self.subword_blocks, list):
|
92 |
+
for idx, elem in enumerate(self.subword_blocks):
|
93 |
+
self.subword_blocks[idx] = tuple(elem)
|
94 |
+
self.subword_blocks = tuple(self.subword_blocks)
|
95 |
+
|
96 |
+
if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2:
|
97 |
+
raise ValueError(
|
98 |
+
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
|
99 |
+
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
|
100 |
+
"'gated-gelu' or 'relu'"
|
101 |
+
)
|
102 |
+
|
103 |
+
# for backwards compatibility
|
104 |
+
if feed_forward_proj == "gated-gelu":
|
105 |
+
self.dense_act_fn = "gelu_new"
|
106 |
+
|
107 |
+
super().__init__(
|
108 |
+
pad_token_id=pad_token_id,
|
109 |
+
eos_token_id=eos_token_id,
|
110 |
+
is_encoder_decoder=is_encoder_decoder,
|
111 |
+
**kwargs,
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
class GBSWT5OnnxConfig(OnnxSeq2SeqConfigWithPast):
|
116 |
+
""" just copy of T5OnnxConfig. """
|
117 |
+
@property
|
118 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
119 |
+
common_inputs = {
|
120 |
+
"input_ids": {0: "batch", 1: "encoder_sequence"},
|
121 |
+
"attention_mask": {0: "batch", 1: "encoder_sequence"},
|
122 |
+
}
|
123 |
+
if self.use_past:
|
124 |
+
common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence"
|
125 |
+
common_inputs["decoder_input_ids"] = {0: "batch"}
|
126 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"}
|
127 |
+
else:
|
128 |
+
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
|
129 |
+
common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"}
|
130 |
+
|
131 |
+
if self.use_past:
|
132 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
133 |
+
|
134 |
+
return common_inputs
|
135 |
+
|
136 |
+
@property
|
137 |
+
def default_onnx_opset(self) -> int:
|
138 |
+
return 13
|
139 |
+
|
gbst.py
ADDED
@@ -0,0 +1,254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Gradient-based Subword Tokenization(GBST) Layer implementation.
|
3 |
+
|
4 |
+
based on lucidrains/charformer-pytorch implementation,
|
5 |
+
which distributed under MIT License.
|
6 |
+
|
7 |
+
original code location:
|
8 |
+
https://github.com/lucidrains/charformer-pytorch/charformer_pytorch.py
|
9 |
+
|
10 |
+
copyright (c) 2023~, ETRI LIRS. Jong-hun Shin.
|
11 |
+
"""
|
12 |
+
import math
|
13 |
+
import functools
|
14 |
+
import torch
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
from typing import Optional
|
18 |
+
|
19 |
+
from torch import einsum, nn, Tensor
|
20 |
+
from transformers.utils import logging
|
21 |
+
from einops.layers.torch import Rearrange
|
22 |
+
from einops import rearrange, repeat
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
# Block definition
|
28 |
+
_BLOCKS = (
|
29 |
+
(1, 0), (2, 0), (3, 0), (4, 0),
|
30 |
+
(6, 0), (9, 0),
|
31 |
+
#(12, 0), (12, 3), (12, 6), (12, 9)
|
32 |
+
)
|
33 |
+
|
34 |
+
@torch.jit.script
|
35 |
+
def pad_to_multiple(in_tensor:Tensor, multiple:int, seq_dim:int,
|
36 |
+
dim:int, value:Optional[float]):
|
37 |
+
seqlen = in_tensor.shape[seq_dim]
|
38 |
+
padded_len = math.ceil(seqlen / multiple) * multiple
|
39 |
+
if seqlen == padded_len:
|
40 |
+
return in_tensor
|
41 |
+
pad_offset = (0,) * (-1 - dim) * 2
|
42 |
+
if len(pad_offset) == 0:
|
43 |
+
return F.pad(in_tensor, (0, padded_len - seqlen), value=value)
|
44 |
+
# unpack 2 dims
|
45 |
+
d1, d2 = pad_offset
|
46 |
+
return F.pad(in_tensor, (d1, d2, 0, padded_len - seqlen), value=value)
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
class Depthwise1dConv(nn.Module):
|
52 |
+
def __init__(self, in_dim, out_dim, krnl_size, use_bn=False):
|
53 |
+
super().__init__()
|
54 |
+
self.use_bn = use_bn
|
55 |
+
self.convol = nn.Conv1d(in_dim, out_dim, krnl_size, groups=in_dim)
|
56 |
+
# EXPERIMENTAL: add BatchNorm Layer
|
57 |
+
if self.use_bn:
|
58 |
+
self.bn = nn.BatchNorm1d(out_dim, eps=1e-05,)
|
59 |
+
self.proj = nn.Conv1d(out_dim, out_dim, 1)
|
60 |
+
|
61 |
+
@torch.cuda.amp.autocast(enabled=False, dtype=torch.float32)
|
62 |
+
def forward(self, in_tensor):
|
63 |
+
in_tensor = self.convol(in_tensor)
|
64 |
+
if self.use_bn:
|
65 |
+
in_tensor = self.bn(in_tensor)
|
66 |
+
return self.proj(in_tensor)
|
67 |
+
|
68 |
+
def _init_weights(self, factor:float=0.05):
|
69 |
+
logger.debug(f"1dConv-Weight initialize called, before: {self.convol.weight.data}")
|
70 |
+
self.convol.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
71 |
+
self.proj.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
72 |
+
logger.debug(f"1dConv-Weight initialize called, after: {self.convol.weight.data}")
|
73 |
+
|
74 |
+
|
75 |
+
class Padding(nn.Module):
|
76 |
+
def __init__(self, padding, value=0):
|
77 |
+
super().__init__()
|
78 |
+
self.padding = padding
|
79 |
+
self.value = value
|
80 |
+
|
81 |
+
def forward(self, in_tensor):
|
82 |
+
return F.pad(in_tensor, self.padding, value=self.value)
|
83 |
+
|
84 |
+
|
85 |
+
class GBSWT(nn.Module):
|
86 |
+
""" Gradient-based Sub-Word Tokenizer implementation. """
|
87 |
+
def __init__(self, embed_tokens,
|
88 |
+
max_block_size=None,
|
89 |
+
blocks=_BLOCKS,
|
90 |
+
downsample_factor=1,
|
91 |
+
score_consensus_attn=True,
|
92 |
+
use_bn=False,):
|
93 |
+
super().__init__()
|
94 |
+
num_tokens, dim = embed_tokens.weight.shape
|
95 |
+
|
96 |
+
assert (max_block_size is not None) ^ (blocks is not None), \
|
97 |
+
'max_block_size or blocks must be given.'
|
98 |
+
if blocks is None:
|
99 |
+
self.blocks = tuple(map(lambda elem: (elem, 0), range(1, max_block_size+1)))
|
100 |
+
else:
|
101 |
+
if not isinstance(blocks, tuple):
|
102 |
+
raise ValueError('blocks must be assigned as a tuple')
|
103 |
+
self.blocks = tuple(map(lambda elem: elem if isinstance(elem, tuple) else (elem, 0), blocks))
|
104 |
+
if not all([(offset < block_size) for block_size, offset in self.blocks]):
|
105 |
+
raise ValueError('Offset must be smaller than given block size.')
|
106 |
+
max_block_size = max(list(map(lambda x: x[0], self.blocks)))
|
107 |
+
|
108 |
+
assert downsample_factor <= max_block_size, \
|
109 |
+
'downsample factor must be less than the max_block_size.'
|
110 |
+
|
111 |
+
self.downsample_factor = downsample_factor
|
112 |
+
self.score_consensus_attn = score_consensus_attn
|
113 |
+
self.use_bn = use_bn
|
114 |
+
logger.debug(f"GBSWT Subword Block Combinations: {self.blocks}")
|
115 |
+
logger.debug(f"GBSWT Downsampling factor: {self.downsample_factor}, use BatchNorm: {self.use_bn}")
|
116 |
+
|
117 |
+
def lcm(*num):
|
118 |
+
return int(functools.reduce(lambda x, y: int((x * y) / math.gcd(x, y)), num, 1))
|
119 |
+
|
120 |
+
self.block_pad_multiple = lcm(*[block_size for block_size, _ in self.blocks])
|
121 |
+
#print(f"block_pad_multiple: {self.block_pad_multiple}")
|
122 |
+
|
123 |
+
# layer definition
|
124 |
+
self.embeds = embed_tokens
|
125 |
+
self.positional_convol = nn.Sequential(
|
126 |
+
Padding((0, 0, 0, max_block_size-1)),
|
127 |
+
Rearrange('b s d -> b d s'),
|
128 |
+
Depthwise1dConv(dim, dim, krnl_size=max_block_size, use_bn=self.use_bn,),
|
129 |
+
Rearrange('b d s -> b s d'))
|
130 |
+
self.cand_scoring = nn.Sequential(
|
131 |
+
nn.Linear(dim, 1),
|
132 |
+
Rearrange('... () -> ...'))
|
133 |
+
|
134 |
+
def _init_weights(self, factor:float=0.05):
|
135 |
+
self.positional_convol[2]._init_weights(factor)
|
136 |
+
#print(f"GBSTW weight initialization called: before: {self.cand_scoring[0].weight.data}")
|
137 |
+
self.cand_scoring[0].weight.data.normal_(mean=0.0, std=factor * 1.0)
|
138 |
+
#print(f"GBSTW weight initialization called: after: {self.cand_scoring[0].weight.data}")
|
139 |
+
|
140 |
+
def get_blocks(self):
|
141 |
+
""" return GBST candidate blocking list. """
|
142 |
+
return self.blocks
|
143 |
+
|
144 |
+
@torch.cuda.amp.autocast()
|
145 |
+
def forward(self, in_tensor, attention_mask=None):
|
146 |
+
b, s = in_tensor.shape
|
147 |
+
#print(f"initial shape: b, s : {b}, {s}, in_tensor.shape: {in_tensor.shape}")
|
148 |
+
mask = attention_mask
|
149 |
+
#print(f"mask: {mask}")
|
150 |
+
block_multi, ds_factor = self.block_pad_multiple, self.downsample_factor
|
151 |
+
|
152 |
+
in_tensor = self.embeds(in_tensor)
|
153 |
+
in_tensor = self.positional_convol(in_tensor)
|
154 |
+
in_tensor = pad_to_multiple(in_tensor, block_multi,
|
155 |
+
seq_dim=1, dim=-2, value=0.0)
|
156 |
+
if mask is not None:
|
157 |
+
mask = pad_to_multiple(mask, block_multi,
|
158 |
+
seq_dim=1, dim=-1, value=False)
|
159 |
+
|
160 |
+
def _masked_mean(in_tensor:Tensor, mask:Tensor, dim:int=-1):
|
161 |
+
len_diff = len(in_tensor.shape) - len(mask.shape)
|
162 |
+
mask = torch.unsqueeze(mask, dim=-len_diff)
|
163 |
+
in_tensor.masked_fill_(~(mask.bool()), 0.)
|
164 |
+
|
165 |
+
total_elems = mask.sum(dim=dim)
|
166 |
+
mean = in_tensor.sum(dim=dim) / total_elems.clamp(min=1.)
|
167 |
+
mean.masked_fill_((total_elems == 0), 0.)
|
168 |
+
return mean.float()
|
169 |
+
|
170 |
+
block_reprs, block_masks = [], []
|
171 |
+
|
172 |
+
# 이제 입력 시퀀스를 cloning해서 후보를 세팅
|
173 |
+
for block_size, offset in self.blocks:
|
174 |
+
block_in = in_tensor.clone()
|
175 |
+
if mask is not None:
|
176 |
+
block_mask = mask.clone()
|
177 |
+
need_padding = offset > 0
|
178 |
+
|
179 |
+
if need_padding:
|
180 |
+
loff, roff = (block_size - offset), offset
|
181 |
+
#print(f"loff: {loff}, roff: {roff}")
|
182 |
+
block_in = F.pad(block_in, (0, 0, loff, roff), value=0.0)
|
183 |
+
if mask is not None:
|
184 |
+
block_mask = F.pad(block_mask, (0, 0, loff, roff), value=False)
|
185 |
+
|
186 |
+
blks = rearrange(block_in, 'b (s m) d -> b s m d', m=block_size)
|
187 |
+
if mask is not None:
|
188 |
+
mask_blks = rearrange(block_mask, 'b (s m) -> b s m', m=block_size)
|
189 |
+
blk_repr = _masked_mean(blks, mask_blks, dim=-2)
|
190 |
+
else:
|
191 |
+
blk_repr = blks.mean(dim=-2)
|
192 |
+
|
193 |
+
blk_repr = repeat(blk_repr, 'b s d -> b (s m) d', m=block_size)
|
194 |
+
|
195 |
+
if need_padding:
|
196 |
+
blk_repr = blk_repr[:, loff:-roff]
|
197 |
+
|
198 |
+
block_reprs.append(blk_repr)
|
199 |
+
|
200 |
+
if mask is not None:
|
201 |
+
mask_blks = torch.any(mask_blks, dim=-1)
|
202 |
+
mask_blks = repeat(mask_blks, 'b s -> b (s m)', m=block_size)
|
203 |
+
if need_padding:
|
204 |
+
mask_blks = mask_blks[:, loff:-roff]
|
205 |
+
block_masks.append(mask_blks)
|
206 |
+
|
207 |
+
# stack them all
|
208 |
+
block_reprs = torch.stack(block_reprs, dim=2,)
|
209 |
+
scores = self.cand_scoring(block_reprs)
|
210 |
+
|
211 |
+
if mask is not None:
|
212 |
+
block_masks = torch.stack(block_masks, dim=2)
|
213 |
+
max_neg_val = -torch.finfo(scores.dtype).max
|
214 |
+
scores = scores.masked_fill(~block_masks, max_neg_val)
|
215 |
+
|
216 |
+
scores = scores.softmax(dim=2)
|
217 |
+
|
218 |
+
# cheap consensus attention, as equation (5) in paper.
|
219 |
+
if self.score_consensus_attn:
|
220 |
+
score_sim = einsum('b i d, b j d -> b i j', scores, scores)
|
221 |
+
|
222 |
+
if mask is not None:
|
223 |
+
cross_mask = rearrange(mask, 'b i -> b i ()') * rearrange(mask, 'b j -> b () j')
|
224 |
+
max_neg_val = -torch.finfo(score_sim.dtype).max
|
225 |
+
score_sim = score_sim.masked_fill((~(cross_mask.bool())), max_neg_val)
|
226 |
+
|
227 |
+
score_attn = score_sim.softmax(dim=-1)
|
228 |
+
scores = einsum('b i j, b j m -> b i m', score_attn, scores)
|
229 |
+
|
230 |
+
scores = rearrange(scores, 'b n m -> b n m ()')
|
231 |
+
in_tensor = (block_reprs * scores).sum(dim=2)
|
232 |
+
|
233 |
+
@torch.jit.script
|
234 |
+
def _reshape_input_tensor(in_tensor:Tensor, s:int, d:int):
|
235 |
+
# get divisible length to pad
|
236 |
+
m = int(math.ceil(s / d) * d)
|
237 |
+
#print(f"_reshape_input_tensor: {m}")
|
238 |
+
return in_tensor[:, :m]
|
239 |
+
|
240 |
+
in_tensor = _reshape_input_tensor(in_tensor, s, ds_factor)
|
241 |
+
if mask is not None:
|
242 |
+
mask = _reshape_input_tensor(mask, s, ds_factor)
|
243 |
+
|
244 |
+
# downsample with mean pooling
|
245 |
+
in_tensor = rearrange(in_tensor, 'b (n m) d -> b n m d', m=ds_factor)
|
246 |
+
if mask is not None:
|
247 |
+
mask = rearrange(mask, 'b (n m) -> b n m', m=ds_factor)
|
248 |
+
in_tensor = _masked_mean(in_tensor, mask, dim=2)
|
249 |
+
mask = torch.any(mask, dim=-1)
|
250 |
+
else:
|
251 |
+
in_tensor = in_tensor.mean(dim=-2)
|
252 |
+
|
253 |
+
# tuple을 반환하기 때문에, forward()에서 [0]을 취해 바꿔줘야 한다
|
254 |
+
return in_tensor, mask
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"decoder_start_token_id": 0,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.33.2"
|
7 |
+
}
|
modeling_gbswt5.py
ADDED
@@ -0,0 +1,766 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
hf transformers-compatible GBST + T5 Model implementation.
|
3 |
+
|
4 |
+
several methods are copying from huggingface/transformers/models/t5/modeling_t5.py
|
5 |
+
as Implementation Standards for compatibility. (version 4.28.1)
|
6 |
+
|
7 |
+
hf transformers' modeling_t5.py file is distributed under Apache 2.0 License.
|
8 |
+
|
9 |
+
Copyright (C) 2023, ETRI LIRS, Jong-hun Shin.
|
10 |
+
"""
|
11 |
+
import copy
|
12 |
+
|
13 |
+
from typing import Optional, Union, Tuple
|
14 |
+
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from torch import nn
|
18 |
+
from transformers import add_start_docstrings
|
19 |
+
from transformers.utils import logging
|
20 |
+
from transformers.modeling_outputs import (
|
21 |
+
BaseModelOutput,
|
22 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
23 |
+
Seq2SeqLMOutput,
|
24 |
+
Seq2SeqModelOutput,
|
25 |
+
)
|
26 |
+
from transformers.models.t5.modeling_t5 import (
|
27 |
+
T5LayerNorm, T5Block, T5Stack,
|
28 |
+
T5Model, T5PreTrainedModel, T5ForConditionalGeneration, T5EncoderModel,
|
29 |
+
T5DenseActDense, T5DenseGatedActDense, T5Attention,
|
30 |
+
T5_START_DOCSTRING
|
31 |
+
)
|
32 |
+
|
33 |
+
from .configuration_gbswt5 import GBSWT5Config
|
34 |
+
from .gbst import GBSWT
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
class GBSWT5PreTrainedModel(T5PreTrainedModel):
|
41 |
+
config_class = GBSWT5Config
|
42 |
+
base_model_prefix = "GBSWT5"
|
43 |
+
is_parallelizable = True
|
44 |
+
supports_gradient_checkpointing = True
|
45 |
+
_no_split_modules = ["T5Block"]
|
46 |
+
_keep_in_fp32_modules = ["wo"]
|
47 |
+
|
48 |
+
def _init_weights(self, module):
|
49 |
+
"""Initialize the weights. 대부분은 T5PreTrainedModel을 따른다. """
|
50 |
+
factor = self.config.initializer_factor # Used for testing weights initialization
|
51 |
+
if isinstance(module, T5LayerNorm):
|
52 |
+
module.weight.data.fill_(factor * 1.0)
|
53 |
+
elif isinstance(
|
54 |
+
module,
|
55 |
+
( GBSWT5Model, GBSWT5ForConditionalGeneration, GBSWT5EncoderModel,),
|
56 |
+
):
|
57 |
+
# Mesh TensorFlow embeddings initialization
|
58 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
59 |
+
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
60 |
+
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
|
61 |
+
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
62 |
+
if hasattr(module, "qa_outputs"):
|
63 |
+
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
64 |
+
module.qa_outputs.bias.data.zero_()
|
65 |
+
elif isinstance(module, T5DenseActDense):
|
66 |
+
# Mesh TensorFlow FF initialization
|
67 |
+
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
68 |
+
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
69 |
+
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
70 |
+
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
71 |
+
module.wi.bias.data.zero_()
|
72 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
73 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
74 |
+
module.wo.bias.data.zero_()
|
75 |
+
elif isinstance(module, T5DenseGatedActDense):
|
76 |
+
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
77 |
+
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
78 |
+
module.wi_0.bias.data.zero_()
|
79 |
+
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
80 |
+
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
81 |
+
module.wi_1.bias.data.zero_()
|
82 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
83 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
84 |
+
module.wo.bias.data.zero_()
|
85 |
+
elif isinstance(module, T5Attention):
|
86 |
+
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
87 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
88 |
+
d_model = self.config.d_model
|
89 |
+
key_value_proj_dim = self.config.d_kv
|
90 |
+
n_heads = self.config.num_heads
|
91 |
+
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
92 |
+
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
93 |
+
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
94 |
+
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
95 |
+
if module.has_relative_attention_bias:
|
96 |
+
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
97 |
+
elif isinstance(module, GBSWT):
|
98 |
+
module._init_weights(factor)
|
99 |
+
|
100 |
+
|
101 |
+
class GBSWT5Stack(GBSWT5PreTrainedModel):
|
102 |
+
""" implement GBST-enabled T5Model, based on HF Transformers's T5Stack. """
|
103 |
+
def __init__(self, config: GBSWT5Config, embed_tokens :nn.Embedding=None):
|
104 |
+
# 초기화는 이전의 것을 따른다. 상속이 좀 애매해서, 사실 별도로 정의해야 하나 싶기도 하다.
|
105 |
+
super().__init__(config)
|
106 |
+
|
107 |
+
# override embed_tokens, apply GBWST
|
108 |
+
self.embed_tokens = GBSWT(embed_tokens=embed_tokens,
|
109 |
+
max_block_size=config.max_subword_block_size,
|
110 |
+
blocks=config.subword_blocks,
|
111 |
+
downsample_factor=config.downsample_factor,
|
112 |
+
score_consensus_attn=config.score_consensus_attn,
|
113 |
+
use_bn=config.gbst_batchnorm,)
|
114 |
+
self.is_decoder = config.is_decoder
|
115 |
+
|
116 |
+
self.block = nn.ModuleList(
|
117 |
+
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
|
118 |
+
)
|
119 |
+
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
120 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
121 |
+
|
122 |
+
# Initialize weights and apply final processing, same as T5 Stack.
|
123 |
+
self.post_init()
|
124 |
+
# for Model Parallel
|
125 |
+
self.model_parallel = False
|
126 |
+
self.device_map = False
|
127 |
+
self.gradient_checkpointing = False
|
128 |
+
self.downsample_factor = config.downsample_factor
|
129 |
+
|
130 |
+
def forward(self,
|
131 |
+
input_ids=None,
|
132 |
+
attention_mask=None,
|
133 |
+
encoder_hidden_states=None,
|
134 |
+
encoder_attention_mask=None,
|
135 |
+
inputs_embeds=None,
|
136 |
+
head_mask=None,
|
137 |
+
cross_attn_head_mask=None,
|
138 |
+
past_key_values=None,
|
139 |
+
use_cache=None,
|
140 |
+
output_attentions=None,
|
141 |
+
output_hidden_states=None,
|
142 |
+
return_dict=None,
|
143 |
+
):
|
144 |
+
""" GBST 파트를 제외하면, T5Stack.forward() 구현을 그대로 복제하였다. """
|
145 |
+
# Model parallel
|
146 |
+
if self.model_parallel:
|
147 |
+
torch.cuda.set_device(self.first_device)
|
148 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
149 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
150 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
151 |
+
output_hidden_states = (
|
152 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
153 |
+
)
|
154 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
155 |
+
|
156 |
+
if input_ids is not None and inputs_embeds is not None:
|
157 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
158 |
+
raise ValueError(
|
159 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
160 |
+
)
|
161 |
+
elif input_ids is not None:
|
162 |
+
input_shape = input_ids.size()
|
163 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
164 |
+
elif inputs_embeds is not None:
|
165 |
+
input_shape = inputs_embeds.size()[:-1]
|
166 |
+
else:
|
167 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
168 |
+
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
|
169 |
+
|
170 |
+
if inputs_embeds is None:
|
171 |
+
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
|
172 |
+
#print(f"old: {input_shape}")
|
173 |
+
inputs_embeds, attention_mask = self.embed_tokens(input_ids, attention_mask)
|
174 |
+
# for downsample_factor > 1
|
175 |
+
input_shape = inputs_embeds.size()[:-1]
|
176 |
+
#print(f"new: {input_shape}")
|
177 |
+
|
178 |
+
batch_size, seq_length = input_shape
|
179 |
+
#print(f"bs: {batch_size}, sl: {seq_length}")
|
180 |
+
|
181 |
+
# required mask seq length can be calculated via length of past
|
182 |
+
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
183 |
+
#print(f"mask_seq_length: {mask_seq_length}")
|
184 |
+
|
185 |
+
if use_cache is True:
|
186 |
+
assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"
|
187 |
+
|
188 |
+
if attention_mask is None:
|
189 |
+
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
|
190 |
+
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
|
191 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
192 |
+
encoder_attention_mask = torch.ones(
|
193 |
+
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
|
194 |
+
)
|
195 |
+
|
196 |
+
# initialize past_key_values with `None` if past does not exist
|
197 |
+
if past_key_values is None:
|
198 |
+
past_key_values = [None] * len(self.block)
|
199 |
+
|
200 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
201 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
202 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
|
203 |
+
|
204 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
205 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
206 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
207 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
208 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
209 |
+
if encoder_attention_mask is None:
|
210 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
|
211 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
212 |
+
else:
|
213 |
+
encoder_extended_attention_mask = None
|
214 |
+
|
215 |
+
if self.gradient_checkpointing and self.training:
|
216 |
+
if use_cache:
|
217 |
+
logger.warning_once(
|
218 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
219 |
+
)
|
220 |
+
use_cache = False
|
221 |
+
|
222 |
+
# Prepare head mask if needed
|
223 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
224 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
225 |
+
present_key_value_states = () if use_cache else None
|
226 |
+
all_hidden_states = () if output_hidden_states else None
|
227 |
+
all_attentions = () if output_attentions else None
|
228 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
229 |
+
position_bias = None
|
230 |
+
encoder_decoder_position_bias = None
|
231 |
+
|
232 |
+
hidden_states = self.dropout(inputs_embeds)
|
233 |
+
|
234 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
235 |
+
layer_head_mask = head_mask[i]
|
236 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
237 |
+
# Model parallel
|
238 |
+
if self.model_parallel:
|
239 |
+
torch.cuda.set_device(hidden_states.device)
|
240 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
241 |
+
if attention_mask is not None:
|
242 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
243 |
+
if position_bias is not None:
|
244 |
+
position_bias = position_bias.to(hidden_states.device)
|
245 |
+
if encoder_hidden_states is not None:
|
246 |
+
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
|
247 |
+
if encoder_extended_attention_mask is not None:
|
248 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
|
249 |
+
if encoder_decoder_position_bias is not None:
|
250 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
|
251 |
+
if layer_head_mask is not None:
|
252 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
253 |
+
if cross_attn_layer_head_mask is not None:
|
254 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
|
255 |
+
if output_hidden_states:
|
256 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
257 |
+
|
258 |
+
if self.gradient_checkpointing and self.training:
|
259 |
+
|
260 |
+
def create_custom_forward(module):
|
261 |
+
def custom_forward(*inputs):
|
262 |
+
return tuple(module(*inputs, use_cache, output_attentions))
|
263 |
+
|
264 |
+
return custom_forward
|
265 |
+
|
266 |
+
layer_outputs = checkpoint(
|
267 |
+
create_custom_forward(layer_module),
|
268 |
+
hidden_states,
|
269 |
+
extended_attention_mask,
|
270 |
+
position_bias,
|
271 |
+
encoder_hidden_states,
|
272 |
+
encoder_extended_attention_mask,
|
273 |
+
encoder_decoder_position_bias,
|
274 |
+
layer_head_mask,
|
275 |
+
cross_attn_layer_head_mask,
|
276 |
+
None, # past_key_value is always None with gradient checkpointing
|
277 |
+
)
|
278 |
+
else:
|
279 |
+
layer_outputs = layer_module(
|
280 |
+
hidden_states,
|
281 |
+
attention_mask=extended_attention_mask,
|
282 |
+
position_bias=position_bias,
|
283 |
+
encoder_hidden_states=encoder_hidden_states,
|
284 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
285 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
286 |
+
layer_head_mask=layer_head_mask,
|
287 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
288 |
+
past_key_value=past_key_value,
|
289 |
+
use_cache=use_cache,
|
290 |
+
output_attentions=output_attentions,
|
291 |
+
)
|
292 |
+
|
293 |
+
# layer_outputs is a tuple with:
|
294 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
295 |
+
if use_cache is False:
|
296 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
297 |
+
|
298 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
299 |
+
|
300 |
+
# We share the position biases between the layers - the first layer store them
|
301 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
302 |
+
# (cross-attention position bias), (cross-attention weights)
|
303 |
+
position_bias = layer_outputs[2]
|
304 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
305 |
+
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
306 |
+
# append next layer key value states
|
307 |
+
if use_cache:
|
308 |
+
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
309 |
+
|
310 |
+
if output_attentions:
|
311 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
312 |
+
if self.is_decoder:
|
313 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
314 |
+
|
315 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
316 |
+
if self.model_parallel:
|
317 |
+
for k, v in self.device_map.items():
|
318 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
319 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
320 |
+
|
321 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
322 |
+
hidden_states = self.dropout(hidden_states)
|
323 |
+
|
324 |
+
# Add last layer
|
325 |
+
if output_hidden_states:
|
326 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
327 |
+
|
328 |
+
if not return_dict:
|
329 |
+
return tuple(
|
330 |
+
v
|
331 |
+
for v in [
|
332 |
+
hidden_states,
|
333 |
+
present_key_value_states,
|
334 |
+
all_hidden_states,
|
335 |
+
all_attentions,
|
336 |
+
all_cross_attentions,
|
337 |
+
]
|
338 |
+
if v is not None
|
339 |
+
), attention_mask
|
340 |
+
|
341 |
+
# must be return downsampled attention_mask
|
342 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
343 |
+
last_hidden_state=hidden_states,
|
344 |
+
past_key_values=present_key_value_states,
|
345 |
+
hidden_states=all_hidden_states,
|
346 |
+
attentions=all_attentions,
|
347 |
+
cross_attentions=all_cross_attentions,
|
348 |
+
), attention_mask
|
349 |
+
|
350 |
+
def get_input_embeddings(self):
|
351 |
+
return self.embed_tokens.embeds
|
352 |
+
|
353 |
+
def set_input_embeddings(self, new_embeddings):
|
354 |
+
self.embed_tokens.embeds = new_embeddings
|
355 |
+
|
356 |
+
|
357 |
+
GBSWT5Stack.parallelize = T5Stack.parallelize
|
358 |
+
GBSWT5Stack.deparallelize = T5Stack.deparallelize
|
359 |
+
|
360 |
+
|
361 |
+
class GBSWT5Model(GBSWT5PreTrainedModel):
|
362 |
+
_keys_to_ignore_on_load_unexpected = [
|
363 |
+
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
|
364 |
+
]
|
365 |
+
_tied_weights_keys = ["encoder.embed_tokens.embeds.weight", "decoder_embed_tokens.embeds.weight"]
|
366 |
+
|
367 |
+
def __init__(self, config: GBSWT5Config):
|
368 |
+
""" override T5Model """
|
369 |
+
# override some default missing parameters for pretrained ByT5 models (e.g. google/byt5-small)
|
370 |
+
if not hasattr(config, 'max_subword_block_size'):
|
371 |
+
config.max_subword_block_size = None
|
372 |
+
if not hasattr(config, 'subword_blocks'):
|
373 |
+
config.subword_blocks = ((1, 0), (2, 0), (3, 0), (6, 0), (9, 0),)
|
374 |
+
if not hasattr(config, 'downsample_factor'):
|
375 |
+
config.downsample_factor = 1
|
376 |
+
if not hasattr(config, 'score_consensus_attn'):
|
377 |
+
config.score_consensus_attn = True
|
378 |
+
|
379 |
+
super().__init__(config)
|
380 |
+
|
381 |
+
# naive T5와 같이 embedding은 공유함
|
382 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
383 |
+
|
384 |
+
encoder_cfg = copy.deepcopy(config)
|
385 |
+
encoder_cfg.is_decoder = False
|
386 |
+
encoder_cfg.use_cache = False
|
387 |
+
encoder_cfg.is_encoder_decoder = False
|
388 |
+
self.encoder = GBSWT5Stack(encoder_cfg, self.shared)
|
389 |
+
|
390 |
+
# Embedding base를 공유하기는 하지만, decoder에는 GBSWT를
|
391 |
+
# 적용하지 않아야 한다.
|
392 |
+
decoder_cfg = copy.deepcopy(config)
|
393 |
+
decoder_cfg.is_decoder = True
|
394 |
+
decoder_cfg.is_encoder_decoder = False
|
395 |
+
decoder_cfg.num_layers = config.num_decoder_layers
|
396 |
+
self.decoder = T5Stack(decoder_cfg, self.shared)
|
397 |
+
|
398 |
+
self.post_init()
|
399 |
+
|
400 |
+
self.model_parallel = False
|
401 |
+
self.device_map = None
|
402 |
+
|
403 |
+
def forward(self,
|
404 |
+
input_ids: Optional[torch.LongTensor] = None,
|
405 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
406 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
407 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
408 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
409 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
410 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
411 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
412 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
413 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
414 |
+
decoder_inputs_embeds: Optional[torch.Tensor] = None,
|
415 |
+
use_cache: Optional[bool] = None,
|
416 |
+
output_attentions: Optional[bool] = None,
|
417 |
+
output_hidden_states: Optional[bool] = None,
|
418 |
+
return_dict: Optional[bool] = None,
|
419 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
|
420 |
+
"""
|
421 |
+
중요한 것은, downsampling이 된 경우 attention_mask가 변경되므로,
|
422 |
+
이를 반영해주는 것이 필요하다. hf transformers 4.29.1에서 복제함
|
423 |
+
"""
|
424 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
425 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
426 |
+
|
427 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
428 |
+
if head_mask is not None and decoder_head_mask is None:
|
429 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
430 |
+
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
431 |
+
decoder_head_mask = head_mask
|
432 |
+
|
433 |
+
# Encode if needed (training, first prediction pass)
|
434 |
+
if encoder_outputs is None:
|
435 |
+
encoder_outputs, attention_mask = self.encoder(
|
436 |
+
input_ids=input_ids,
|
437 |
+
attention_mask=attention_mask,
|
438 |
+
inputs_embeds=inputs_embeds,
|
439 |
+
head_mask=head_mask,
|
440 |
+
output_attentions=output_attentions,
|
441 |
+
output_hidden_states=output_hidden_states,
|
442 |
+
return_dict=return_dict,
|
443 |
+
)
|
444 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
445 |
+
# inference mode (e.g. .generate()) - must dewrap encoder output 'tuple'
|
446 |
+
encoder_outputs, attention_mask = encoder_outputs
|
447 |
+
encoder_outputs = BaseModelOutput(
|
448 |
+
last_hidden_state=encoder_outputs[0],
|
449 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
450 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
451 |
+
)
|
452 |
+
|
453 |
+
hidden_states = encoder_outputs[0]
|
454 |
+
|
455 |
+
# Set device for model parallelism
|
456 |
+
if self.model_parallel:
|
457 |
+
torch.cuda.set_device(self.decoder.first_device)
|
458 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
459 |
+
if decoder_input_ids is not None:
|
460 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
461 |
+
if attention_mask is not None:
|
462 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
463 |
+
if decoder_attention_mask is not None:
|
464 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
465 |
+
|
466 |
+
# Decode
|
467 |
+
decoder_outputs = self.decoder(
|
468 |
+
input_ids=decoder_input_ids,
|
469 |
+
attention_mask=decoder_attention_mask,
|
470 |
+
inputs_embeds=decoder_inputs_embeds,
|
471 |
+
past_key_values=past_key_values,
|
472 |
+
encoder_hidden_states=hidden_states,
|
473 |
+
encoder_attention_mask=attention_mask,
|
474 |
+
head_mask=decoder_head_mask,
|
475 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
476 |
+
use_cache=use_cache,
|
477 |
+
output_attentions=output_attentions,
|
478 |
+
output_hidden_states=output_hidden_states,
|
479 |
+
return_dict=return_dict,
|
480 |
+
)
|
481 |
+
|
482 |
+
if not return_dict:
|
483 |
+
return decoder_outputs + encoder_outputs
|
484 |
+
|
485 |
+
return Seq2SeqModelOutput(
|
486 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
487 |
+
past_key_values=decoder_outputs.past_key_values,
|
488 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
489 |
+
decoder_attentions=decoder_outputs.attentions,
|
490 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
491 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
492 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
493 |
+
encoder_attentions=encoder_outputs.attentions,
|
494 |
+
)
|
495 |
+
|
496 |
+
|
497 |
+
GBSWT5Model.parallelize = T5Model.parallelize
|
498 |
+
GBSWT5Model.deparallelize = T5Model.deparallelize
|
499 |
+
GBSWT5Model.get_input_embeddings = T5Model.get_input_embeddings
|
500 |
+
GBSWT5Model.set_input_embeddings = T5Model.set_input_embeddings
|
501 |
+
GBSWT5Model.get_encoder = T5Model.get_encoder
|
502 |
+
GBSWT5Model._prune_heads = T5Model._prune_heads
|
503 |
+
|
504 |
+
|
505 |
+
@add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING)
|
506 |
+
class GBSWT5ForConditionalGeneration(GBSWT5PreTrainedModel):
|
507 |
+
_keys_to_ignore_on_load_unexpected = [
|
508 |
+
"decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight",
|
509 |
+
]
|
510 |
+
_tied_weights_keys = ["encoder.embed_tokens.embeds.weight",
|
511 |
+
"decoder_embed_tokens.embeds.weight",
|
512 |
+
"lm_head.weight"]
|
513 |
+
|
514 |
+
def __init__(self, config: GBSWT5Config):
|
515 |
+
# override some default missing parameters for pretrained ByT5 models (e.g. google/byt5-small)
|
516 |
+
if not hasattr(config, 'max_subword_block_size'):
|
517 |
+
config.max_subword_block_size = None
|
518 |
+
if not hasattr(config, 'subword_blocks'):
|
519 |
+
config.subword_blocks = ((1, 0), (2, 0), (3, 0), (6, 0), (9, 0),)
|
520 |
+
if not hasattr(config, 'downsample_factor'):
|
521 |
+
config.downsample_factor = 1
|
522 |
+
if not hasattr(config, 'score_consensus_attn'):
|
523 |
+
config.score_consensus_attn = True
|
524 |
+
|
525 |
+
# Grandparent의 init를 그대로 상속, 나머지는 T5ForConditionalGeneration을 따름
|
526 |
+
super().__init__(config)
|
527 |
+
|
528 |
+
self.model_dim = config.d_model
|
529 |
+
|
530 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
531 |
+
|
532 |
+
encoder_cfg = copy.deepcopy(config)
|
533 |
+
encoder_cfg.is_decoder = False
|
534 |
+
encoder_cfg.use_cache = False
|
535 |
+
encoder_cfg.is_encoder_decoder = False
|
536 |
+
self.encoder = GBSWT5Stack(encoder_cfg, self.shared)
|
537 |
+
|
538 |
+
# Embedding base를 공유하기는 하지만, decoder에는 GBSWT를
|
539 |
+
# 적용하지 않아야 한다.
|
540 |
+
decoder_cfg = copy.deepcopy(config)
|
541 |
+
decoder_cfg.is_decoder = True
|
542 |
+
decoder_cfg.is_encoder_decoder = False
|
543 |
+
decoder_cfg.num_layers = config.num_decoder_layers
|
544 |
+
self.decoder = T5Stack(decoder_cfg, self.shared)
|
545 |
+
|
546 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
547 |
+
|
548 |
+
# Initialize weights and apply final processing
|
549 |
+
self.post_init()
|
550 |
+
|
551 |
+
# Model parallel
|
552 |
+
self.model_parallel = False
|
553 |
+
self.device_map = None
|
554 |
+
|
555 |
+
def forward(self,
|
556 |
+
input_ids: Optional[torch.LongTensor] = None,
|
557 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
558 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
559 |
+
decoder_attention_mask: Optional[torch.BoolTensor] = None,
|
560 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
561 |
+
decoder_head_mask: Optional[torch.FloatTensor] = None,
|
562 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
563 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
564 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
565 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
566 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
567 |
+
labels: Optional[torch.LongTensor] = None,
|
568 |
+
use_cache: Optional[bool] = None,
|
569 |
+
output_attentions: Optional[bool] = None,
|
570 |
+
output_hidden_states: Optional[bool] = None,
|
571 |
+
return_dict: Optional[bool] = None,
|
572 |
+
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
|
573 |
+
"""
|
574 |
+
중요한 것은 encoder outputs에서 수정된 attention_mask를 다시 반영해야 하는 것임
|
575 |
+
downsampling이 들어간 경우, attention_mask가 변경되기 때문.
|
576 |
+
"""
|
577 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
578 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
579 |
+
|
580 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
581 |
+
if head_mask is not None and decoder_head_mask is None:
|
582 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
583 |
+
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
|
584 |
+
decoder_head_mask = head_mask
|
585 |
+
|
586 |
+
# Encode if needed (training, first prediction pass)
|
587 |
+
if encoder_outputs is None:
|
588 |
+
# Convert encoder inputs in embeddings if needed
|
589 |
+
encoder_outputs, attention_mask = self.encoder(
|
590 |
+
input_ids=input_ids,
|
591 |
+
attention_mask=attention_mask,
|
592 |
+
inputs_embeds=inputs_embeds,
|
593 |
+
head_mask=head_mask,
|
594 |
+
output_attentions=output_attentions,
|
595 |
+
output_hidden_states=output_hidden_states,
|
596 |
+
return_dict=return_dict,
|
597 |
+
)
|
598 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
599 |
+
# inference mode (e.g. .generate()) - must dewrap encoder output 'tuple'
|
600 |
+
encoder_outputs, attention_mask = encoder_outputs
|
601 |
+
encoder_outputs = BaseModelOutput(
|
602 |
+
last_hidden_state=encoder_outputs[0],
|
603 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
604 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
605 |
+
)
|
606 |
+
|
607 |
+
hidden_states = encoder_outputs[0]
|
608 |
+
|
609 |
+
if self.model_parallel:
|
610 |
+
torch.cuda.set_device(self.decoder.first_device)
|
611 |
+
|
612 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
613 |
+
# get decoder inputs from shifting lm labels to the right
|
614 |
+
decoder_input_ids = self._shift_right(labels)
|
615 |
+
|
616 |
+
# Set device for model parallelism
|
617 |
+
if self.model_parallel:
|
618 |
+
torch.cuda.set_device(self.decoder.first_device)
|
619 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
620 |
+
if decoder_input_ids is not None:
|
621 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
622 |
+
if attention_mask is not None:
|
623 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
624 |
+
if decoder_attention_mask is not None:
|
625 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
626 |
+
|
627 |
+
# Decode
|
628 |
+
decoder_outputs = self.decoder(
|
629 |
+
input_ids=decoder_input_ids,
|
630 |
+
attention_mask=decoder_attention_mask,
|
631 |
+
inputs_embeds=decoder_inputs_embeds,
|
632 |
+
past_key_values=past_key_values,
|
633 |
+
encoder_hidden_states=hidden_states,
|
634 |
+
encoder_attention_mask=attention_mask,
|
635 |
+
head_mask=decoder_head_mask,
|
636 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
637 |
+
use_cache=use_cache,
|
638 |
+
output_attentions=output_attentions,
|
639 |
+
output_hidden_states=output_hidden_states,
|
640 |
+
return_dict=return_dict,
|
641 |
+
)
|
642 |
+
|
643 |
+
sequence_output = decoder_outputs[0]
|
644 |
+
|
645 |
+
# Set device for model parallelism
|
646 |
+
if self.model_parallel:
|
647 |
+
torch.cuda.set_device(self.encoder.first_device)
|
648 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
649 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
650 |
+
|
651 |
+
if self.config.tie_word_embeddings:
|
652 |
+
# Rescale output before projecting on vocab
|
653 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
654 |
+
sequence_output = sequence_output * (self.model_dim**-0.5)
|
655 |
+
|
656 |
+
lm_logits = self.lm_head(sequence_output)
|
657 |
+
|
658 |
+
loss = None
|
659 |
+
if labels is not None:
|
660 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
661 |
+
# move labels to correct device to enable PP
|
662 |
+
labels = labels.to(lm_logits.device)
|
663 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
664 |
+
# add z_loss for computational stability in bf16 amp.
|
665 |
+
# see https://github.com/huggingface/transformers/pull/10956#issuecomment-820712267
|
666 |
+
if self.config.z_loss != 0.0:
|
667 |
+
log_z = lm_logits.view(-1).logsumexp(-1)
|
668 |
+
loss += self.config.z_loss * log_z.square()
|
669 |
+
|
670 |
+
if not return_dict:
|
671 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
672 |
+
return ((loss,) + output) if loss is not None else output
|
673 |
+
|
674 |
+
return Seq2SeqLMOutput(
|
675 |
+
loss=loss,
|
676 |
+
logits=lm_logits,
|
677 |
+
past_key_values=decoder_outputs.past_key_values,
|
678 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
679 |
+
decoder_attentions=decoder_outputs.attentions,
|
680 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
681 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
682 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
683 |
+
encoder_attentions=encoder_outputs.attentions,
|
684 |
+
)
|
685 |
+
|
686 |
+
|
687 |
+
GBSWT5ForConditionalGeneration.parallelize = T5ForConditionalGeneration.parallelize
|
688 |
+
GBSWT5ForConditionalGeneration.deparallelize = T5ForConditionalGeneration.deparallelize
|
689 |
+
GBSWT5ForConditionalGeneration.get_input_embeddings = T5ForConditionalGeneration.get_input_embeddings
|
690 |
+
GBSWT5ForConditionalGeneration.set_input_embeddings = T5ForConditionalGeneration.set_input_embeddings
|
691 |
+
GBSWT5ForConditionalGeneration.get_output_embeddings = T5ForConditionalGeneration.get_output_embeddings
|
692 |
+
GBSWT5ForConditionalGeneration.set_output_embeddings = T5ForConditionalGeneration.set_output_embeddings
|
693 |
+
GBSWT5ForConditionalGeneration.get_encoder = T5ForConditionalGeneration.get_encoder
|
694 |
+
GBSWT5ForConditionalGeneration.prepare_inputs_for_generation = T5ForConditionalGeneration.prepare_inputs_for_generation
|
695 |
+
GBSWT5ForConditionalGeneration.prepare_decoder_input_ids_from_labels = T5ForConditionalGeneration.prepare_decoder_input_ids_from_labels
|
696 |
+
GBSWT5ForConditionalGeneration._reorder_cache = T5ForConditionalGeneration._reorder_cache
|
697 |
+
GBSWT5ForConditionalGeneration._prune_heads = T5Model._prune_heads
|
698 |
+
|
699 |
+
|
700 |
+
class GBSWT5EncoderModel(T5PreTrainedModel):
|
701 |
+
_tied_weights_keys = ["encoder.embed_tokens.embeds.weight"]
|
702 |
+
|
703 |
+
def __init__(self, config: GBSWT5Config):
|
704 |
+
# override some default missing parameters for pretrained ByT5 models (e.g. google/byt5-small)
|
705 |
+
if not hasattr(config, 'max_subword_block_size'):
|
706 |
+
config.max_subword_block_size = None
|
707 |
+
if not hasattr(config, 'subword_blocks'):
|
708 |
+
config.subword_blocks = ((1, 0), (2, 0), (3, 0), (6, 0), (9, 0),)
|
709 |
+
if not hasattr(config, 'downsample_factor'):
|
710 |
+
config.downsample_factor = 1
|
711 |
+
if not hasattr(config, 'score_consensus_attn'):
|
712 |
+
config.score_consensus_attn = True
|
713 |
+
|
714 |
+
super().__init__(config)
|
715 |
+
|
716 |
+
# naive T5와 같이 embedding은 공유함
|
717 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
718 |
+
|
719 |
+
encoder_cfg = copy.deepcopy(config)
|
720 |
+
encoder_cfg.is_decoder = False
|
721 |
+
encoder_cfg.use_cache = False
|
722 |
+
encoder_cfg.is_encoder_decoder = False
|
723 |
+
self.encoder = GBSWT5Stack(encoder_cfg, self.shared)
|
724 |
+
|
725 |
+
self.post_init()
|
726 |
+
|
727 |
+
self.model_parallel = False
|
728 |
+
self.device_map = None
|
729 |
+
|
730 |
+
def forward(self,
|
731 |
+
input_ids: Optional[torch.LongTensor] = None,
|
732 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
733 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
734 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
735 |
+
output_attentions: Optional[bool] = None,
|
736 |
+
output_hidden_states: Optional[bool] = None,
|
737 |
+
return_dict: Optional[bool] = None,
|
738 |
+
return_resized_attention_mask: Optional[bool] = None,
|
739 |
+
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
|
740 |
+
r"""
|
741 |
+
downsampled 된 attention_mask를 함께 반환한다. 단, return_resized_attention_mask=True일 때만.
|
742 |
+
```"""
|
743 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
744 |
+
|
745 |
+
encoder_outputs, attention_mask = self.encoder(
|
746 |
+
input_ids=input_ids,
|
747 |
+
attention_mask=attention_mask,
|
748 |
+
inputs_embeds=inputs_embeds,
|
749 |
+
head_mask=head_mask,
|
750 |
+
output_attentions=output_attentions,
|
751 |
+
output_hidden_states=output_hidden_states,
|
752 |
+
return_dict=return_dict,
|
753 |
+
)
|
754 |
+
|
755 |
+
if return_resized_attention_mask:
|
756 |
+
return encoder_outputs, attention_mask
|
757 |
+
|
758 |
+
return encoder_outputs
|
759 |
+
|
760 |
+
|
761 |
+
GBSWT5EncoderModel.parallelize = T5EncoderModel.parallelize
|
762 |
+
GBSWT5EncoderModel.deparallelize = T5EncoderModel.deparallelize
|
763 |
+
GBSWT5EncoderModel.get_input_embeddings = T5EncoderModel.get_input_embeddings
|
764 |
+
GBSWT5EncoderModel.set_input_embeddings = T5EncoderModel.set_input_embeddings
|
765 |
+
GBSWT5EncoderModel.get_encoder = T5EncoderModel.get_encoder
|
766 |
+
GBSWT5EncoderModel._prune_heads = T5EncoderModel._prune_heads
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c90684b6b4905ad58b09a39183a3651f2c969f1c584cf5733886c2239d7519a4
|
3 |
+
size 2336209429
|
special_tokens_map.json
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>",
|
103 |
+
"<extra_id_100>",
|
104 |
+
"<extra_id_101>",
|
105 |
+
"<extra_id_102>",
|
106 |
+
"<extra_id_103>",
|
107 |
+
"<extra_id_104>",
|
108 |
+
"<extra_id_105>",
|
109 |
+
"<extra_id_106>",
|
110 |
+
"<extra_id_107>",
|
111 |
+
"<extra_id_108>",
|
112 |
+
"<extra_id_109>",
|
113 |
+
"<extra_id_110>",
|
114 |
+
"<extra_id_111>",
|
115 |
+
"<extra_id_112>",
|
116 |
+
"<extra_id_113>",
|
117 |
+
"<extra_id_114>",
|
118 |
+
"<extra_id_115>",
|
119 |
+
"<extra_id_116>",
|
120 |
+
"<extra_id_117>",
|
121 |
+
"<extra_id_118>",
|
122 |
+
"<extra_id_119>",
|
123 |
+
"<extra_id_120>",
|
124 |
+
"<extra_id_121>",
|
125 |
+
"<extra_id_122>",
|
126 |
+
"<extra_id_123>",
|
127 |
+
"<extra_id_124>"
|
128 |
+
],
|
129 |
+
"eos_token": {
|
130 |
+
"content": "</s>",
|
131 |
+
"lstrip": false,
|
132 |
+
"normalized": true,
|
133 |
+
"rstrip": false,
|
134 |
+
"single_word": false
|
135 |
+
},
|
136 |
+
"pad_token": {
|
137 |
+
"content": "<pad>",
|
138 |
+
"lstrip": false,
|
139 |
+
"normalized": true,
|
140 |
+
"rstrip": false,
|
141 |
+
"single_word": false
|
142 |
+
},
|
143 |
+
"unk_token": {
|
144 |
+
"content": "<unk>",
|
145 |
+
"lstrip": false,
|
146 |
+
"normalized": true,
|
147 |
+
"rstrip": false,
|
148 |
+
"single_word": false
|
149 |
+
}
|
150 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>",
|
103 |
+
"<extra_id_100>",
|
104 |
+
"<extra_id_101>",
|
105 |
+
"<extra_id_102>",
|
106 |
+
"<extra_id_103>",
|
107 |
+
"<extra_id_104>",
|
108 |
+
"<extra_id_105>",
|
109 |
+
"<extra_id_106>",
|
110 |
+
"<extra_id_107>",
|
111 |
+
"<extra_id_108>",
|
112 |
+
"<extra_id_109>",
|
113 |
+
"<extra_id_110>",
|
114 |
+
"<extra_id_111>",
|
115 |
+
"<extra_id_112>",
|
116 |
+
"<extra_id_113>",
|
117 |
+
"<extra_id_114>",
|
118 |
+
"<extra_id_115>",
|
119 |
+
"<extra_id_116>",
|
120 |
+
"<extra_id_117>",
|
121 |
+
"<extra_id_118>",
|
122 |
+
"<extra_id_119>",
|
123 |
+
"<extra_id_120>",
|
124 |
+
"<extra_id_121>",
|
125 |
+
"<extra_id_122>",
|
126 |
+
"<extra_id_123>",
|
127 |
+
"<extra_id_124>"
|
128 |
+
],
|
129 |
+
"clean_up_tokenization_spaces": true,
|
130 |
+
"eos_token": {
|
131 |
+
"__type": "AddedToken",
|
132 |
+
"content": "</s>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": true,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false
|
137 |
+
},
|
138 |
+
"extra_ids": 125,
|
139 |
+
"model_max_length": 1000000000000000019884624838656,
|
140 |
+
"pad_token": {
|
141 |
+
"__type": "AddedToken",
|
142 |
+
"content": "<pad>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": true,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false
|
147 |
+
},
|
148 |
+
"tokenizer_class": "ByT5Tokenizer",
|
149 |
+
"unk_token": {
|
150 |
+
"__type": "AddedToken",
|
151 |
+
"content": "<unk>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": true,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false
|
156 |
+
}
|
157 |
+
}
|