Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,22 +1,61 @@
|
|
|
|
1 |
---
|
2 |
-
|
|
|
3 |
tags:
|
4 |
-
- text-generation-inference
|
5 |
-
- transformers
|
6 |
-
- unsloth
|
7 |
- mistral
|
8 |
-
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
12 |
---
|
13 |
|
14 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
- **License:** apache-2.0
|
18 |
-
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
|
|
|
1 |
+
|
2 |
---
|
3 |
+
language: en
|
4 |
+
license: apache-2.0
|
5 |
tags:
|
|
|
|
|
|
|
6 |
- mistral
|
7 |
+
- sql
|
8 |
+
- lora
|
9 |
+
- instruction-tuning
|
10 |
+
datasets:
|
11 |
+
- custom_sql_dataset
|
12 |
---
|
13 |
|
14 |
+
# SQL Query Generation Model
|
15 |
+
|
16 |
+
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 specialized for SQL query generation.
|
17 |
+
|
18 |
+
## Model Details
|
19 |
+
|
20 |
+
- **Base Model**: mistralai/Mistral-7B-Instruct-v0.3
|
21 |
+
- **Training Method**: LoRA (Rank=16, Alpha=32)
|
22 |
+
- **Task**: SQL query generation from natural language instructions
|
23 |
+
- **Training Framework**: Unsloth
|
24 |
+
|
25 |
+
## Usage
|
26 |
+
|
27 |
+
```python
|
28 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
29 |
+
from peft import PeftModel
|
30 |
+
|
31 |
+
# Load the model
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("exaler/aaa-2-sql-2")
|
33 |
+
model = AutoModelForCausalLM.from_pretrained("exaler/aaa-2-sql-2")
|
34 |
+
|
35 |
+
# Format your prompt
|
36 |
+
instruction = """You are an expert SQL query generator. Database schema:
|
37 |
+
Table: [dbo].[Users]
|
38 |
+
Columns: [ID], [Name], [Email], [CreatedDate]
|
39 |
+
Table: [dbo].[Orders]
|
40 |
+
Columns: [OrderID], [UserID], [Amount], [Status], [OrderDate]
|
41 |
+
"""
|
42 |
+
|
43 |
+
input_text = "Find all users who placed orders with amount greater than 1000"
|
44 |
+
|
45 |
+
prompt = f"<s>[INST] {instruction}\n\n{input_text} [/INST]"
|
46 |
+
|
47 |
+
# Generate SQL
|
48 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
49 |
+
outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=512, temperature=0.0)
|
50 |
+
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
51 |
+
print(response)
|
52 |
+
```
|
53 |
+
|
54 |
+
## Training Dataset
|
55 |
|
56 |
+
The model was trained on a custom dataset of SQL queries with their corresponding natural language descriptions.
|
|
|
|
|
57 |
|
58 |
+
## Limitations
|
59 |
|
60 |
+
- The model is optimized for the specific SQL database schema it was trained on
|
61 |
+
- Performance may vary for database schemas significantly different from the training data
|