Create README.md
Browse files
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,30 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            **InvoiceReceiptClassifier** is a fine-tuned LayoutLMv2 model that classifies a document to an invoice or receipt.
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            ## Quick start: using the raw model
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            ```python
         | 
| 6 | 
            +
            from transformers import (
         | 
| 7 | 
            +
                AutoModelForSequenceClassification,
         | 
| 8 | 
            +
                LayoutLMv2FeatureExtractor,
         | 
| 9 | 
            +
                LayoutLMv2Tokenizer,
         | 
| 10 | 
            +
                LayoutLMv2Processor,
         | 
| 11 | 
            +
            )
         | 
| 12 | 
            +
            model = AutoModelForSequenceClassification.from_pretrained("fedihch/InvoiceReceiptClassifier")
         | 
| 13 | 
            +
            feature_extractor = LayoutLMv2FeatureExtractor()
         | 
| 14 | 
            +
            tokenizer = LayoutLMv2Tokenizer.from_pretrained("microsoft/layoutlmv2-base-uncased")
         | 
| 15 | 
            +
            processor = LayoutLMv2Processor(feature_extractor, tokenizer)
         | 
| 16 | 
            +
            ```
         | 
| 17 | 
            +
            ```python
         | 
| 18 | 
            +
            from PIL import Image
         | 
| 19 | 
            +
            input_img = Image.open("*****.jpg")
         | 
| 20 | 
            +
            w, h = input_img.size
         | 
| 21 | 
            +
            input_img = input_img.convert("RGB").resize((int(w * 600 / h), 600))
         | 
| 22 | 
            +
            encoded_inputs = processor(input_img, return_tensors="pt")
         | 
| 23 | 
            +
            for k, v in encoded_inputs.items():
         | 
| 24 | 
            +
                encoded_inputs[k] = v.to(model.device)
         | 
| 25 | 
            +
            outputs = model(**encoded_inputs)
         | 
| 26 | 
            +
            logits = outputs.logits
         | 
| 27 | 
            +
            predicted_class_idx = logits.argmax(-1).item()
         | 
| 28 | 
            +
            id2label = {0: "invoice", 1: "receipt"}
         | 
| 29 | 
            +
            print(id2label[predicted_class_idx])
         | 
| 30 | 
            +
            ```
         |