File size: 4,359 Bytes
3d471d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
modality = 'b'
graph = 'coco_new'
work_dir = './work_dirs/test_prototype/finegym/b_1'
model = dict(
type='RecognizerGCN_7_1_1',
backbone=dict(
type='GCN_7_1_1',
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
graph_cfg=dict(
layout='coco_new',
mode='random',
num_filter=8,
init_off=0.04,
init_std=0.02)),
cls_head=dict(type='SimpleHead_7_4_13', num_classes=99, in_channels=384))
dataset_type = 'PoseDataset'
ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
train_pipeline = [
dict(type='UniformSampleFrames', clip_len=100),
dict(type='PoseDecode'),
dict(
type='Flip',
flip_ratio=0.5,
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
dict(type='Kinetics_Transform'),
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
dict(type='FormatGCNInput', num_person=2),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
val_pipeline = [
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
dict(type='PoseDecode'),
dict(type='Kinetics_Transform'),
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
dict(type='FormatGCNInput', num_person=2),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
test_pipeline = [
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
dict(type='PoseDecode'),
dict(type='Kinetics_Transform'),
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
dict(type='FormatGCNInput', num_person=2),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
]
data = dict(
videos_per_gpu=16,
workers_per_gpu=4,
test_dataloader=dict(videos_per_gpu=1),
train=dict(
type='PoseDataset',
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
pipeline=[
dict(type='UniformSampleFrames', clip_len=100),
dict(type='PoseDecode'),
dict(
type='Flip',
flip_ratio=0.5,
left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
dict(type='Kinetics_Transform'),
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
dict(type='FormatGCNInput', num_person=2),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
],
split='train'),
val=dict(
type='PoseDataset',
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
pipeline=[
dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
dict(type='PoseDecode'),
dict(type='Kinetics_Transform'),
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
dict(type='FormatGCNInput', num_person=2),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
],
split='val'),
test=dict(
type='PoseDataset',
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
pipeline=[
dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
dict(type='PoseDecode'),
dict(type='Kinetics_Transform'),
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']),
dict(type='FormatGCNInput', num_person=2),
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
dict(type='ToTensor', keys=['keypoint'])
],
split='val'))
optimizer = dict(
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
optimizer_config = dict(grad_clip=None)
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
total_epochs = 150
checkpoint_config = dict(interval=1)
evaluation = dict(
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
gpu_ids = range(0, 1)
|