|
modality = 'b' |
|
graph = 'coco_new' |
|
work_dir = './work_dirs/test_prototype/finegym/b_1' |
|
model = dict( |
|
type='RecognizerGCN_7_1_1', |
|
backbone=dict( |
|
type='GCN_7_1_1', |
|
tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'], |
|
graph_cfg=dict( |
|
layout='coco_new', |
|
mode='random', |
|
num_filter=8, |
|
init_off=0.04, |
|
init_std=0.02)), |
|
cls_head=dict(type='SimpleHead_7_4_13', num_classes=99, in_channels=384)) |
|
dataset_type = 'PoseDataset' |
|
ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl' |
|
left_kp = [1, 3, 5, 7, 9, 11, 13, 15] |
|
right_kp = [2, 4, 6, 8, 10, 12, 14, 16] |
|
train_pipeline = [ |
|
dict(type='UniformSampleFrames', clip_len=100), |
|
dict(type='PoseDecode'), |
|
dict( |
|
type='Flip', |
|
flip_ratio=0.5, |
|
left_kp=[1, 3, 5, 7, 9, 11, 13, 15], |
|
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]), |
|
dict(type='Kinetics_Transform'), |
|
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']), |
|
dict(type='FormatGCNInput', num_person=2), |
|
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), |
|
dict(type='ToTensor', keys=['keypoint']) |
|
] |
|
val_pipeline = [ |
|
dict(type='UniformSampleFrames', clip_len=100, num_clips=1), |
|
dict(type='PoseDecode'), |
|
dict(type='Kinetics_Transform'), |
|
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']), |
|
dict(type='FormatGCNInput', num_person=2), |
|
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), |
|
dict(type='ToTensor', keys=['keypoint']) |
|
] |
|
test_pipeline = [ |
|
dict(type='UniformSampleFrames', clip_len=100, num_clips=10), |
|
dict(type='PoseDecode'), |
|
dict(type='Kinetics_Transform'), |
|
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']), |
|
dict(type='FormatGCNInput', num_person=2), |
|
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), |
|
dict(type='ToTensor', keys=['keypoint']) |
|
] |
|
data = dict( |
|
videos_per_gpu=16, |
|
workers_per_gpu=4, |
|
test_dataloader=dict(videos_per_gpu=1), |
|
train=dict( |
|
type='PoseDataset', |
|
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl', |
|
pipeline=[ |
|
dict(type='UniformSampleFrames', clip_len=100), |
|
dict(type='PoseDecode'), |
|
dict( |
|
type='Flip', |
|
flip_ratio=0.5, |
|
left_kp=[1, 3, 5, 7, 9, 11, 13, 15], |
|
right_kp=[2, 4, 6, 8, 10, 12, 14, 16]), |
|
dict(type='Kinetics_Transform'), |
|
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']), |
|
dict(type='FormatGCNInput', num_person=2), |
|
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), |
|
dict(type='ToTensor', keys=['keypoint']) |
|
], |
|
split='train'), |
|
val=dict( |
|
type='PoseDataset', |
|
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl', |
|
pipeline=[ |
|
dict(type='UniformSampleFrames', clip_len=100, num_clips=1), |
|
dict(type='PoseDecode'), |
|
dict(type='Kinetics_Transform'), |
|
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']), |
|
dict(type='FormatGCNInput', num_person=2), |
|
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), |
|
dict(type='ToTensor', keys=['keypoint']) |
|
], |
|
split='val'), |
|
test=dict( |
|
type='PoseDataset', |
|
ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl', |
|
pipeline=[ |
|
dict(type='UniformSampleFrames', clip_len=100, num_clips=10), |
|
dict(type='PoseDecode'), |
|
dict(type='Kinetics_Transform'), |
|
dict(type='GenSkeFeat', dataset='coco_new', feats=['b']), |
|
dict(type='FormatGCNInput', num_person=2), |
|
dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]), |
|
dict(type='ToTensor', keys=['keypoint']) |
|
], |
|
split='val')) |
|
optimizer = dict( |
|
type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True) |
|
optimizer_config = dict(grad_clip=None) |
|
lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False) |
|
total_epochs = 150 |
|
checkpoint_config = dict(interval=1) |
|
evaluation = dict( |
|
interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5)) |
|
log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')]) |
|
dist_params = dict(backend='nccl') |
|
gpu_ids = range(0, 1) |
|
|