firework8 commited on
Commit
51b7e5b
·
verified ·
1 Parent(s): 58345d2

Upload 31 files

Browse files
finegym/finegym_ensemble.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from mmcv import load
2
+ import sys
3
+ # Note: please adjust the relative path according to the actual situation.
4
+ sys.path.append('../..')
5
+ from protogcn.smp import *
6
+
7
+
8
+ j_1 = load('j_1/best_pred.pkl')
9
+ b_1 = load('b_1/best_pred.pkl')
10
+ k_1 = load('k_1/best_pred.pkl')
11
+ j_2 = load('j_2/best_pred.pkl')
12
+ b_2 = load('b_2/best_pred.pkl')
13
+ k_2 = load('k_2/best_pred.pkl')
14
+ jm = load('jm/best_pred.pkl')
15
+ bm = load('bm/best_pred.pkl')
16
+ km = load('km/best_pred.pkl')
17
+ label = load_label('/data/finegym/gym_hrnet.pkl', 'val')
18
+
19
+
20
+ """
21
+ ***************
22
+ InfoGCN v0:
23
+ j jm b bm k km
24
+ 2S: 95.35
25
+ 4S: 95.92
26
+ 6S: 95.92
27
+ ***************
28
+ """
29
+ print('InfoGCN v0:')
30
+ print('j jm b bm k km')
31
+ print('2S')
32
+ fused = comb([j_1, b_1], [1, 1])
33
+ print('Top-1', top1(fused, label))
34
+
35
+ print('4S')
36
+ fused = comb([j_1, b_1, jm, bm], [2, 2, 1, 1])
37
+ print('Top-1', top1(fused, label))
38
+
39
+ print('6S')
40
+ fused = comb([j_1, b_1, k_1, jm, bm, km], [2, 2, 0, 1, 1, 0])
41
+ print('Top-1', top1(fused, label))
42
+
43
+
44
+ """
45
+ ***************
46
+ InfoGCN v1:
47
+ j j b b k k
48
+ 2S: 95.35
49
+ 4S: 95.62
50
+ 6S: 95.94
51
+ ***************
52
+ """
53
+ print('InfoGCN v1:')
54
+ print('j j b b k k')
55
+ print('2S')
56
+ fused = comb([j_1, b_1], [1, 1])
57
+ print('Top-1', top1(fused, label))
58
+
59
+ print('4S')
60
+ fused = comb([j_1, b_1, j_2, b_2], [1, 1, 1, 1])
61
+ print('Top-1', top1(fused, label))
62
+
63
+ print('6S')
64
+ fused = comb([j_1, j_2, b_1, b_2, k_1, k_2], [5, 5, 5, 5, 4, 4])
65
+ print('Top-1', top1(fused, label))
finegym/j_1/20231211_012214.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/j_1/20231211_012214.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/j_1/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdd8f339d11c8287cd01cdc79f41e4cffe9fc67bc414350a59578faab38b7433
3
+ size 5256274
finegym/j_1/best_top1_acc_epoch_141.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf64e0df251c6d5ddba56c5fb3e68d31007580ad22d5fff2f43c0feaa9333ce1
3
+ size 32988198
finegym/j_1/j_1.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'j'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/finegym/j_1'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_1',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_13', num_classes=99, in_channels=384))
16
+ dataset_type = 'PoseDataset'
17
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
18
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
19
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
20
+ train_pipeline = [
21
+ dict(type='UniformSampleFrames', clip_len=100),
22
+ dict(type='PoseDecode'),
23
+ dict(
24
+ type='Flip',
25
+ flip_ratio=0.5,
26
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
27
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
28
+ dict(type='Kinetics_Transform'),
29
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
30
+ dict(type='FormatGCNInput', num_person=2),
31
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
32
+ dict(type='ToTensor', keys=['keypoint'])
33
+ ]
34
+ val_pipeline = [
35
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
36
+ dict(type='PoseDecode'),
37
+ dict(type='Kinetics_Transform'),
38
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
39
+ dict(type='FormatGCNInput', num_person=2),
40
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
41
+ dict(type='ToTensor', keys=['keypoint'])
42
+ ]
43
+ test_pipeline = [
44
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
45
+ dict(type='PoseDecode'),
46
+ dict(type='Kinetics_Transform'),
47
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
48
+ dict(type='FormatGCNInput', num_person=2),
49
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
50
+ dict(type='ToTensor', keys=['keypoint'])
51
+ ]
52
+ data = dict(
53
+ videos_per_gpu=16,
54
+ workers_per_gpu=4,
55
+ test_dataloader=dict(videos_per_gpu=1),
56
+ train=dict(
57
+ type='PoseDataset',
58
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
59
+ pipeline=[
60
+ dict(type='UniformSampleFrames', clip_len=100),
61
+ dict(type='PoseDecode'),
62
+ dict(
63
+ type='Flip',
64
+ flip_ratio=0.5,
65
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
66
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
67
+ dict(type='Kinetics_Transform'),
68
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
69
+ dict(type='FormatGCNInput', num_person=2),
70
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
71
+ dict(type='ToTensor', keys=['keypoint'])
72
+ ],
73
+ split='train'),
74
+ val=dict(
75
+ type='PoseDataset',
76
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
77
+ pipeline=[
78
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
79
+ dict(type='PoseDecode'),
80
+ dict(type='Kinetics_Transform'),
81
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
82
+ dict(type='FormatGCNInput', num_person=2),
83
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
84
+ dict(type='ToTensor', keys=['keypoint'])
85
+ ],
86
+ split='val'),
87
+ test=dict(
88
+ type='PoseDataset',
89
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
90
+ pipeline=[
91
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
92
+ dict(type='PoseDecode'),
93
+ dict(type='Kinetics_Transform'),
94
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
95
+ dict(type='FormatGCNInput', num_person=2),
96
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
97
+ dict(type='ToTensor', keys=['keypoint'])
98
+ ],
99
+ split='val'))
100
+ optimizer = dict(
101
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
102
+ optimizer_config = dict(grad_clip=None)
103
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
104
+ total_epochs = 150
105
+ checkpoint_config = dict(interval=1)
106
+ evaluation = dict(
107
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
108
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
109
+ dist_params = dict(backend='nccl')
110
+ gpu_ids = range(0, 1)
finegym/j_2/20231224_082026.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/j_2/20231224_082026.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/j_2/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a72d3a4445fddc7a6abd18ce43dd1eb4a1851b8b87c53738feb110d9268f4326
3
+ size 5256389
finegym/j_2/best_top1_acc_epoch_139.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f23e35fa982b7264696c742ff543b560d86fc46a122a59d38aad9044e19114ac
3
+ size 34831398
finegym/j_2/j_2.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'j'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/finegym/j_2'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_2',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_12', num_classes=99, in_channels=384))
16
+ dataset_type = 'PoseDataset'
17
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
18
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
19
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
20
+ train_pipeline = [
21
+ dict(type='UniformSampleFrames', clip_len=100),
22
+ dict(type='PoseDecode'),
23
+ dict(
24
+ type='Flip',
25
+ flip_ratio=0.5,
26
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
27
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
28
+ dict(type='Kinetics_Transform'),
29
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
30
+ dict(type='FormatGCNInput', num_person=2),
31
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
32
+ dict(type='ToTensor', keys=['keypoint'])
33
+ ]
34
+ val_pipeline = [
35
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
36
+ dict(type='PoseDecode'),
37
+ dict(type='Kinetics_Transform'),
38
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
39
+ dict(type='FormatGCNInput', num_person=2),
40
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
41
+ dict(type='ToTensor', keys=['keypoint'])
42
+ ]
43
+ test_pipeline = [
44
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
45
+ dict(type='PoseDecode'),
46
+ dict(type='Kinetics_Transform'),
47
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
48
+ dict(type='FormatGCNInput', num_person=2),
49
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
50
+ dict(type='ToTensor', keys=['keypoint'])
51
+ ]
52
+ data = dict(
53
+ videos_per_gpu=16,
54
+ workers_per_gpu=4,
55
+ test_dataloader=dict(videos_per_gpu=1),
56
+ train=dict(
57
+ type='PoseDataset',
58
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
59
+ pipeline=[
60
+ dict(type='UniformSampleFrames', clip_len=100),
61
+ dict(type='PoseDecode'),
62
+ dict(
63
+ type='Flip',
64
+ flip_ratio=0.5,
65
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
66
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
67
+ dict(type='Kinetics_Transform'),
68
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
69
+ dict(type='FormatGCNInput', num_person=2),
70
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
71
+ dict(type='ToTensor', keys=['keypoint'])
72
+ ],
73
+ split='train'),
74
+ val=dict(
75
+ type='PoseDataset',
76
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
77
+ pipeline=[
78
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
79
+ dict(type='PoseDecode'),
80
+ dict(type='Kinetics_Transform'),
81
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
82
+ dict(type='FormatGCNInput', num_person=2),
83
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
84
+ dict(type='ToTensor', keys=['keypoint'])
85
+ ],
86
+ split='val'),
87
+ test=dict(
88
+ type='PoseDataset',
89
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
90
+ pipeline=[
91
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
92
+ dict(type='PoseDecode'),
93
+ dict(type='Kinetics_Transform'),
94
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['j']),
95
+ dict(type='FormatGCNInput', num_person=2),
96
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
97
+ dict(type='ToTensor', keys=['keypoint'])
98
+ ],
99
+ split='val'))
100
+ optimizer = dict(
101
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
102
+ optimizer_config = dict(grad_clip=None)
103
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
104
+ total_epochs = 150
105
+ checkpoint_config = dict(interval=1)
106
+ evaluation = dict(
107
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
108
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
109
+ dist_params = dict(backend='nccl')
110
+ gpu_ids = range(0, 1)
finegym/jm/20231223_050822.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/jm/20231223_050822.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/jm/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe6f5ad6852df6efdaee4f16c5b2807522e0d7dfeb7cd8f2c862ca09ca251be4
3
+ size 5257496
finegym/jm/best_top1_acc_epoch_133.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3802dac4a8c21075f654ae61faa6f3352b75eb605dfdccb118155fe93ba396ef
3
+ size 34831398
finegym/jm/jm.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'jm'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/finegym/jm'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_2',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_12', num_classes=99, in_channels=384))
16
+ dataset_type = 'PoseDataset'
17
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
18
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
19
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
20
+ train_pipeline = [
21
+ dict(type='UniformSampleFrames', clip_len=100),
22
+ dict(type='PoseDecode'),
23
+ dict(
24
+ type='Flip',
25
+ flip_ratio=0.5,
26
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
27
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
28
+ dict(type='Kinetics_Transform'),
29
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
30
+ dict(type='FormatGCNInput', num_person=2),
31
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
32
+ dict(type='ToTensor', keys=['keypoint'])
33
+ ]
34
+ val_pipeline = [
35
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
36
+ dict(type='PoseDecode'),
37
+ dict(type='Kinetics_Transform'),
38
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
39
+ dict(type='FormatGCNInput', num_person=2),
40
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
41
+ dict(type='ToTensor', keys=['keypoint'])
42
+ ]
43
+ test_pipeline = [
44
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
45
+ dict(type='PoseDecode'),
46
+ dict(type='Kinetics_Transform'),
47
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
48
+ dict(type='FormatGCNInput', num_person=2),
49
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
50
+ dict(type='ToTensor', keys=['keypoint'])
51
+ ]
52
+ data = dict(
53
+ videos_per_gpu=16,
54
+ workers_per_gpu=4,
55
+ test_dataloader=dict(videos_per_gpu=1),
56
+ train=dict(
57
+ type='PoseDataset',
58
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
59
+ pipeline=[
60
+ dict(type='UniformSampleFrames', clip_len=100),
61
+ dict(type='PoseDecode'),
62
+ dict(
63
+ type='Flip',
64
+ flip_ratio=0.5,
65
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
66
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
67
+ dict(type='Kinetics_Transform'),
68
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
69
+ dict(type='FormatGCNInput', num_person=2),
70
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
71
+ dict(type='ToTensor', keys=['keypoint'])
72
+ ],
73
+ split='train'),
74
+ val=dict(
75
+ type='PoseDataset',
76
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
77
+ pipeline=[
78
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
79
+ dict(type='PoseDecode'),
80
+ dict(type='Kinetics_Transform'),
81
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
82
+ dict(type='FormatGCNInput', num_person=2),
83
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
84
+ dict(type='ToTensor', keys=['keypoint'])
85
+ ],
86
+ split='val'),
87
+ test=dict(
88
+ type='PoseDataset',
89
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
90
+ pipeline=[
91
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
92
+ dict(type='PoseDecode'),
93
+ dict(type='Kinetics_Transform'),
94
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['jm']),
95
+ dict(type='FormatGCNInput', num_person=2),
96
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
97
+ dict(type='ToTensor', keys=['keypoint'])
98
+ ],
99
+ split='val'))
100
+ optimizer = dict(
101
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
102
+ optimizer_config = dict(grad_clip=None)
103
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
104
+ total_epochs = 150
105
+ checkpoint_config = dict(interval=1)
106
+ evaluation = dict(
107
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
108
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
109
+ dist_params = dict(backend='nccl')
110
+ gpu_ids = range(0, 1)
finegym/k_1/20231224_082045.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/k_1/20231224_082045.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/k_1/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcea1573792981d7bdff5f465202b1bd8d555dabe5f5d6dc0582c7917daeaada
3
+ size 5255099
finegym/k_1/best_top1_acc_epoch_141.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7170effef12b65c2d95bb43073f50c1bbd040a5f8bb6f768ccbd03ab8a06a524
3
+ size 32988198
finegym/k_1/k_1.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'k'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/finegym/k_1'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_1',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_11', num_classes=99, in_channels=384))
16
+ dataset_type = 'PoseDataset'
17
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
18
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
19
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
20
+ train_pipeline = [
21
+ dict(type='UniformSampleFrames', clip_len=100),
22
+ dict(type='PoseDecode'),
23
+ dict(
24
+ type='Flip',
25
+ flip_ratio=0.5,
26
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
27
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
28
+ dict(type='Kinetics_Transform'),
29
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
30
+ dict(type='FormatGCNInput', num_person=2),
31
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
32
+ dict(type='ToTensor', keys=['keypoint'])
33
+ ]
34
+ val_pipeline = [
35
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
36
+ dict(type='PoseDecode'),
37
+ dict(type='Kinetics_Transform'),
38
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
39
+ dict(type='FormatGCNInput', num_person=2),
40
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
41
+ dict(type='ToTensor', keys=['keypoint'])
42
+ ]
43
+ test_pipeline = [
44
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
45
+ dict(type='PoseDecode'),
46
+ dict(type='Kinetics_Transform'),
47
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
48
+ dict(type='FormatGCNInput', num_person=2),
49
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
50
+ dict(type='ToTensor', keys=['keypoint'])
51
+ ]
52
+ data = dict(
53
+ videos_per_gpu=16,
54
+ workers_per_gpu=4,
55
+ test_dataloader=dict(videos_per_gpu=1),
56
+ train=dict(
57
+ type='PoseDataset',
58
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
59
+ pipeline=[
60
+ dict(type='UniformSampleFrames', clip_len=100),
61
+ dict(type='PoseDecode'),
62
+ dict(
63
+ type='Flip',
64
+ flip_ratio=0.5,
65
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
66
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
67
+ dict(type='Kinetics_Transform'),
68
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
69
+ dict(type='FormatGCNInput', num_person=2),
70
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
71
+ dict(type='ToTensor', keys=['keypoint'])
72
+ ],
73
+ split='train'),
74
+ val=dict(
75
+ type='PoseDataset',
76
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
77
+ pipeline=[
78
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
79
+ dict(type='PoseDecode'),
80
+ dict(type='Kinetics_Transform'),
81
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
82
+ dict(type='FormatGCNInput', num_person=2),
83
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
84
+ dict(type='ToTensor', keys=['keypoint'])
85
+ ],
86
+ split='val'),
87
+ test=dict(
88
+ type='PoseDataset',
89
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
90
+ pipeline=[
91
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
92
+ dict(type='PoseDecode'),
93
+ dict(type='Kinetics_Transform'),
94
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
95
+ dict(type='FormatGCNInput', num_person=2),
96
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
97
+ dict(type='ToTensor', keys=['keypoint'])
98
+ ],
99
+ split='val'))
100
+ optimizer = dict(
101
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
102
+ optimizer_config = dict(grad_clip=None)
103
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
104
+ total_epochs = 150
105
+ checkpoint_config = dict(interval=1)
106
+ evaluation = dict(
107
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
108
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
109
+ dist_params = dict(backend='nccl')
110
+ gpu_ids = range(0, 1)
finegym/k_2/20231223_050754.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/k_2/20231223_050754.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/k_2/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f0e0f7faf3b55d2548dd74c1c19f136672717408d2449ba00d1eff56f313e93
3
+ size 5255049
finegym/k_2/best_top1_acc_epoch_146.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ceaa2e38bf535c7eccc7fa0817d95381f9d507a68ae8cc7899a9afda614ca14
3
+ size 32988198
finegym/k_2/k_2.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'k'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/finegym/k_2'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_1',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_11', num_classes=99, in_channels=384))
16
+ dataset_type = 'PoseDataset'
17
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
18
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
19
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
20
+ train_pipeline = [
21
+ dict(type='UniformSampleFrames', clip_len=100),
22
+ dict(type='PoseDecode'),
23
+ dict(
24
+ type='Flip',
25
+ flip_ratio=0.5,
26
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
27
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
28
+ dict(type='Kinetics_Transform'),
29
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
30
+ dict(type='FormatGCNInput', num_person=2),
31
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
32
+ dict(type='ToTensor', keys=['keypoint'])
33
+ ]
34
+ val_pipeline = [
35
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
36
+ dict(type='PoseDecode'),
37
+ dict(type='Kinetics_Transform'),
38
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
39
+ dict(type='FormatGCNInput', num_person=2),
40
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
41
+ dict(type='ToTensor', keys=['keypoint'])
42
+ ]
43
+ test_pipeline = [
44
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
45
+ dict(type='PoseDecode'),
46
+ dict(type='Kinetics_Transform'),
47
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
48
+ dict(type='FormatGCNInput', num_person=2),
49
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
50
+ dict(type='ToTensor', keys=['keypoint'])
51
+ ]
52
+ data = dict(
53
+ videos_per_gpu=16,
54
+ workers_per_gpu=4,
55
+ test_dataloader=dict(videos_per_gpu=1),
56
+ train=dict(
57
+ type='PoseDataset',
58
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
59
+ pipeline=[
60
+ dict(type='UniformSampleFrames', clip_len=100),
61
+ dict(type='PoseDecode'),
62
+ dict(
63
+ type='Flip',
64
+ flip_ratio=0.5,
65
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
66
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
67
+ dict(type='Kinetics_Transform'),
68
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
69
+ dict(type='FormatGCNInput', num_person=2),
70
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
71
+ dict(type='ToTensor', keys=['keypoint'])
72
+ ],
73
+ split='train'),
74
+ val=dict(
75
+ type='PoseDataset',
76
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
77
+ pipeline=[
78
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
79
+ dict(type='PoseDecode'),
80
+ dict(type='Kinetics_Transform'),
81
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
82
+ dict(type='FormatGCNInput', num_person=2),
83
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
84
+ dict(type='ToTensor', keys=['keypoint'])
85
+ ],
86
+ split='val'),
87
+ test=dict(
88
+ type='PoseDataset',
89
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
90
+ pipeline=[
91
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
92
+ dict(type='PoseDecode'),
93
+ dict(type='Kinetics_Transform'),
94
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['k']),
95
+ dict(type='FormatGCNInput', num_person=2),
96
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
97
+ dict(type='ToTensor', keys=['keypoint'])
98
+ ],
99
+ split='val'))
100
+ optimizer = dict(
101
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
102
+ optimizer_config = dict(grad_clip=None)
103
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
104
+ total_epochs = 150
105
+ checkpoint_config = dict(interval=1)
106
+ evaluation = dict(
107
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
108
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
109
+ dist_params = dict(backend='nccl')
110
+ gpu_ids = range(0, 1)
finegym/km/20231224_081954.log ADDED
The diff for this file is too large to render. See raw diff
 
finegym/km/20231224_081954.log.json ADDED
The diff for this file is too large to render. See raw diff
 
finegym/km/best_pred.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83d7ed85ce9ab6ea1661e3207a917164fe727efb634461924ac93bb2d465d380
3
+ size 5255820
finegym/km/best_top1_acc_epoch_146.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5ff88ded6ec05d9b0054f13a11f87d6eba127ba604a5cabe2dd590f3523b31c
3
+ size 32988198
finegym/km/km.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ modality = 'km'
2
+ graph = 'coco_new'
3
+ work_dir = './work_dirs/test_prototype/finegym/km'
4
+ model = dict(
5
+ type='RecognizerGCN_7_1_1',
6
+ backbone=dict(
7
+ type='GCN_7_1_1',
8
+ tcn_ms_cfg=[(3, 1), (3, 2), (3, 3), (3, 4), ('max', 3), '1x1'],
9
+ graph_cfg=dict(
10
+ layout='coco_new',
11
+ mode='random',
12
+ num_filter=8,
13
+ init_off=0.04,
14
+ init_std=0.02)),
15
+ cls_head=dict(type='SimpleHead_7_4_11', num_classes=99, in_channels=384))
16
+ dataset_type = 'PoseDataset'
17
+ ann_file = '/data/lhd/pyskl_data/gym/gym_hrnet.pkl'
18
+ left_kp = [1, 3, 5, 7, 9, 11, 13, 15]
19
+ right_kp = [2, 4, 6, 8, 10, 12, 14, 16]
20
+ train_pipeline = [
21
+ dict(type='UniformSampleFrames', clip_len=100),
22
+ dict(type='PoseDecode'),
23
+ dict(
24
+ type='Flip',
25
+ flip_ratio=0.5,
26
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
27
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
28
+ dict(type='Kinetics_Transform'),
29
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['km']),
30
+ dict(type='FormatGCNInput', num_person=2),
31
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
32
+ dict(type='ToTensor', keys=['keypoint'])
33
+ ]
34
+ val_pipeline = [
35
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
36
+ dict(type='PoseDecode'),
37
+ dict(type='Kinetics_Transform'),
38
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['km']),
39
+ dict(type='FormatGCNInput', num_person=2),
40
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
41
+ dict(type='ToTensor', keys=['keypoint'])
42
+ ]
43
+ test_pipeline = [
44
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
45
+ dict(type='PoseDecode'),
46
+ dict(type='Kinetics_Transform'),
47
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['km']),
48
+ dict(type='FormatGCNInput', num_person=2),
49
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
50
+ dict(type='ToTensor', keys=['keypoint'])
51
+ ]
52
+ data = dict(
53
+ videos_per_gpu=16,
54
+ workers_per_gpu=4,
55
+ test_dataloader=dict(videos_per_gpu=1),
56
+ train=dict(
57
+ type='PoseDataset',
58
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
59
+ pipeline=[
60
+ dict(type='UniformSampleFrames', clip_len=100),
61
+ dict(type='PoseDecode'),
62
+ dict(
63
+ type='Flip',
64
+ flip_ratio=0.5,
65
+ left_kp=[1, 3, 5, 7, 9, 11, 13, 15],
66
+ right_kp=[2, 4, 6, 8, 10, 12, 14, 16]),
67
+ dict(type='Kinetics_Transform'),
68
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['km']),
69
+ dict(type='FormatGCNInput', num_person=2),
70
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
71
+ dict(type='ToTensor', keys=['keypoint'])
72
+ ],
73
+ split='train'),
74
+ val=dict(
75
+ type='PoseDataset',
76
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
77
+ pipeline=[
78
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=1),
79
+ dict(type='PoseDecode'),
80
+ dict(type='Kinetics_Transform'),
81
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['km']),
82
+ dict(type='FormatGCNInput', num_person=2),
83
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
84
+ dict(type='ToTensor', keys=['keypoint'])
85
+ ],
86
+ split='val'),
87
+ test=dict(
88
+ type='PoseDataset',
89
+ ann_file='/data/lhd/pyskl_data/gym/gym_hrnet.pkl',
90
+ pipeline=[
91
+ dict(type='UniformSampleFrames', clip_len=100, num_clips=10),
92
+ dict(type='PoseDecode'),
93
+ dict(type='Kinetics_Transform'),
94
+ dict(type='GenSkeFeat', dataset='coco_new', feats=['km']),
95
+ dict(type='FormatGCNInput', num_person=2),
96
+ dict(type='Collect', keys=['keypoint', 'label'], meta_keys=[]),
97
+ dict(type='ToTensor', keys=['keypoint'])
98
+ ],
99
+ split='val'))
100
+ optimizer = dict(
101
+ type='SGD', lr=0.025, momentum=0.9, weight_decay=0.0005, nesterov=True)
102
+ optimizer_config = dict(grad_clip=None)
103
+ lr_config = dict(policy='CosineAnnealing', min_lr=0, by_epoch=False)
104
+ total_epochs = 150
105
+ checkpoint_config = dict(interval=1)
106
+ evaluation = dict(
107
+ interval=1, metrics=['top_k_accuracy', 'mean_class_accuracy'], topk=(1, 5))
108
+ log_config = dict(interval=100, hooks=[dict(type='TextLoggerHook')])
109
+ dist_params = dict(backend='nccl')
110
+ gpu_ids = range(0, 1)